

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF COMMERCE

MAKEUP EXAMINATION – JAN 2023

Course Code: OE145

Course Name: Optimization Techniques

Program & Sem: BBB/BBE V Sem

Date: 24-JAN-2023

Time: 9:30am – 12:30pm

Max Marks: 100

Weightage: 50%

ın	sti	""	∩tı	\sim	nc	٠.
	IJЦ	u	LL	u	112	

- (i) Read the all questions carefully and answer accordingly.
- (ii) Answer all the questions.

Part A [Memory Recall Questions]

			,	
Answ	er all the Question	s. Each question ca	rries 1 mark.	(10Qx 1M= 10M)
1)	The solution to a trapositive allocations a a) m + n	ire		mns is feasible if the number of (CO3) [Knowledge] d) m +n + 1
2)	use of this	s model it to investigate	e the outcomes of variou	s alternative courses of action. (CO1) [Knowledge]
	a) Predictive model	b) Descriptive model	c) Optimization model	d) None of these
3)	-		nment problem can also b problem c) LPP d)	(CO3) [Knowledge]
	•		,	. ,
4)	•	. •	g model are assumed to c) Functions d)	be (CO2) [Knowledge] None of these
5)			s imposed on the Linear F	Programming Problem. (CO2) [Knowledge]
	a) Variables	b) Costs c) Prof	its d) Constraints	
6)			l for c) Decision making d)	
7)	The region of feasibl	e solution in Linear Pro	gramming problem methor	od is called (CO2) [Knowledge]
	a) Infeasible Region	b) Unbounded Reg	ion c) Infinite Region	· /-
8)	The graphical metho	d if LPP uses		(CO2) [Knowledge]
	a) Linear equations	b) Constraint equation	ns c) Objective function	d) All of the above

9) While solving a LPP graphically, the area bounded by constraints is called

(CO2) [Knowledge]

a) Feasible region b) Infeasible region c) Unbounded region d) None of these

10) _____ method is used to solve an assignment problem.

a) American method b) Hungarian method c) German method d) British method

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries 10 marks.

(5Qx10M=50M)

11) Briefly explain the main phases of Operations Research?

(CO1) [Comprehension]

12) A Manufacturer produces 3 models I, II and III of a certain product using raw materials A and B. The following table gives the data. Formulate this problem as a Linear programming model.

(CO2) [Comprehension]

Raw Material	Requir	ement p	Availability	
Naw Malenai	I	11	Ш	Availability
Α	2	3	5	4000
В	4	2	7	6000
Min Demand	200	200	150	
Profit / Unit	30	20	50	

13) Find the initial solution for the given transportation problem by any two methods of your choice.

(CO3) [Comprehension]

Demand	5	8	7	14	
О3	40	8	70	20	18
O2	70	30	40	60	9
01	19	30	50	10	7
	D1	D2	D3	D4	Supply

14) Find the Optimal solution using Hungarian Method.

(CO3) [Comprehension]

	Α	В	С	D
Р	8	26	17	11
Q	13	28	4	26
R	38	19	18	15
S	19	26	24	10

15) Construct a network for the project whose activities and precedence relationships are as given below: (CO4) [Comprehension]

Activity	А	В	С	D	Е	F	G	Η	I	J	K
Predecessor			Α	Α	I,J,K	B,D	B,D	F	Α	G,H	F

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries 20 marks.

(2Qx20M=40M)

16) Briefly explain the formulation of LPP using Graphical Method.

(CO2) [Application]

Maximize Z = 3 x + 5 y

Subject to the constraints

x ≤ 4

2 y ≤ 12

 $3 x + 2 y \le 18$

where $x, y \ge 0$ using graphical method.

17) A project schedule has the following characteristics.

(CO4) [Application]

Activity	1-2	1-3	2-4	3-4	3-5	4-9	5-6	5-7	6-8	7-8	8-10	9-10
Time (Days)	4	1	1	1	6	5	4	8	1	2	5	7

From the following information, you are required to

- a) Construct a network diagram.
- b) Compute the earliest and latest event time.
- c) Determine the critical path and project duration.
- d) Compute total and free float for each activity.

- - -