PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF COMMERCE
MAKEUP EXAMINATION - JAN 2023
Course Code: OE145
Course Name: Optimization Techniques
Program \& Sem: BBB/BBE V Sem

Date: 24-JAN-2023
Time: 9:30am - 12:30pm
Max Marks: 100
Weightage: 50\%

Instructions:

(i) Read the all questions carefully and answer accordingly.
(ii) Answer all the questions.

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries 1 mark.

(10Qx $1 \mathrm{M}=10 \mathrm{M}$)

1) The solution to a transportation problem with ' m ' rows and ' n ' columns is feasible if the number of positive allocations are
(CO3) [Knowledge]
a) $m+n$
b) $m x n$
c) $m+n-1$
d) $m+n+1$
2) \qquad use of this model it to investigate the outcomes of various alternative courses of action.
(CO1) [Knowledge]
a) Predictive model
b) Descriptive model
c) Optimization model
d) None of these
3) The Hungarian method for solving an assignment problem can also be used to solve:
(CO3) [Knowledge]
a) A transportation problem
b) Salesman problem
c) LPP
d) Both
(a) and (b)
4) All the parameters in the linear programming model are assumed to be
(CO2) [Knowledge]
a) Variables
b) Constraints
c) Functions
d) None of these
5) \qquad are the restrictions or limitations imposed on the Linear Programming Problem
a) Variables
b) Costs
c) Profits
d) Constraints
6) Operations Research is a very powerful tool for \qquad (CO1) [Knowledge]
a) Operations
b) Research
c) Decision making
d) None of these
7) The region of feasible solution in Linear Programming problem method is called \qquad (CO2) [Knowledge]
a) Infeasible Region
b) Unbounded Region
c) Infinite Region
d) feasible Region
8) The graphical method if LPP uses
(CO2) [Knowledge]
a) Linear equations
b) Constraint equations
c) Objective function
d) All of the above
9) While solving a LPP graphically, the area bounded by constraints is called
(CO2) [Knowledge]
a) Feasible region
b) Infeasible region
c) Unbounded region
d) None of these
10) \qquad method is used to solve an assignment problem.
(CO3) [Knowledge]
a) American method
b) Hungarian method
c) German method
d) British method

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries 10 marks.

(5Qx10M=50M)
11) Briefly explain the main phases of Operations Research?
(CO1) [Comprehension]
12) A Manufacturer produces 3 models I, II and III of a certain product using raw materials A and B. The following table gives the data. Formulate this problem as a Linear programming model.
(CO2) [Comprehension]

Raw Material	Requirement per Unit			Availability
	I	II	III	
A	2	3	5	4000
B	4	2	7	6000
Min Demand	200	200	150	---
Profit / Unit	30	20	50	---

13) Find the initial solution for the given transportation problem by any two methods of your choice.
(CO3) [Comprehension]

	D1	D2	D3	D4	Supply
O1	19	30	50	10	$\mathbf{7}$
O2	70	30	40	60	$\mathbf{9}$
O3	40	8	70	20	$\mathbf{1 8}$
Demand	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 4}$	

14) Find the Optimal solution using Hungarian Method.
(CO3) [Comprehension]

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{P}	8	26	17	11
\mathbf{Q}	13	28	4	26
\mathbf{R}	38	19	18	15
\mathbf{S}	19	26	24	10

15) Construct a network for the project whose activities and precedence relationships are as given below:
(CO4) [Comprehension]

Activity	A	B	C	D	E	F	G	H	I	J	K
Predecessor	--	--	A	A	I,J,K	B,D	B,D	F	A	G,H	F

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries $\mathbf{2 0}$ marks.

16) Briefly explain the formulation of LPP using Graphical Method.
(CO2) [Application]
Maximize $Z=3 x+5 y$
Subject to the constraints
$x \leq 4$
$2 \mathrm{y} \leq 12$
$3 x+2 y \leq 18$
where $x, y \geq 0$ using graphical method.
17) A project schedule has the following characteristics.
(CO4) [Application]

Activity	$1-2$	$1-3$	$2-4$	$3-4$	$3-5$	$4-9$	$5-6$	$5-7$	$6-8$	$7-8$	$8-10$	$9-10$
Time (Days)	4	1	1	1	6	5	4	8	1	2	5	7

From the following information, you are required to
a) Construct a network diagram.
b) Compute the earliest and latest event time.
c) Determine the critical path and project duration.
d) Compute total and free float for each activity.

