PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF ENGINEERING
MAKE-UP EXAMINATION- JAN 2023
Course Code: PET 316
Course Name: Fundamentals of Process Engineering Calculations
Program: B. Tech (PET)

Date: 24-Jan-2023
Time: 01:00 AM to 4:00 PM
Max Marks: 100
Weightage: 50\%

Instructions:

(i) Read the all questions carefully and answer accordingly.
(ii) All questions are mandatory

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries TWO marks.

1. Define the terms extraction and absorption
(C.O.No.1) [Knowledge]
2. Define Raoult's Law
(C.O.No.2) [Knowledge]
3. What is the relation between partial pressure and total pressure?
(C.O.No.2)[Knowledge]
4. What do you understand by Mole per cent?
(C.O.No.3) [Knowledge]
5. In a simple distillation column, how many outlets are there and what is there name?
(C.O.No.2) [Knowledge]
6. What do you mean by HCV and LCV?
(C.O.No.3) [Knowledge]
7. Define Amagat's Law with proper equation
(C.O.No.2) [Knowledge]
8. Define the term saturated humidity
(C.O.No.4) [Knowledge]
9. Why do we use solvent in absorption process?
(C.O.No.4) [Knowledge]
10. Which component in absorption process does not take part in the reaction?
(C.O.No.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer the Questions. Question carries TEN marks.

(4Qx10M=40M)
11. For a chemical reaction 6 N of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was prepared. Now for a particular reaction the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is to be expressed in terms of $\mathrm{g} / /$ from 6 N . Convert the concentration in the required units so the desired reaction maybe carried out. [A.wt $\mathrm{S}=32$]
(C.O.No.1) [Application]
12. A gas mixture contains 28% of CO_{2} as solute and 72% of Argon as Inert Gas is fed to an absorption tower, which it is contacted with monoethanolamine (MEA) which is used as a solvent which absorbs CO_{2}. The molar flow rate of solvent flowing in the absorption tower is $450 \mathrm{kgmol} / \mathrm{hr}$. The lean gas leaving the tower contains $\mathrm{CO}_{2}=7.5 \%$, monoethanolamine $=5.5 \%$ and rest is Argon gas. Evaluate and find the percentage recovery of solute CO_{2}.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{Na}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

(C.O.No.2) [Application]
13. Conditioned air at 760 mmHg total pressure, $80^{\circ} \mathrm{C}$ and at a humidity of 0.06 kg water per kg of bone dry air enters the drier. It leaves the drier at 760 mmHg total pressure and $80^{\circ} \mathrm{C}$, with $\mathrm{RH} 81 \%$. Vapour pressure of water at $50^{\circ} \mathrm{C}$ is 91.5 mmHg . If 75 kg of water enters into the air stream per hour, calculate the rate of bone dry air flowing through the dryer.
(C.O.No.3) [Application]

14 A diluted acid was prepared for a chemical reaction. The strength of Sulphurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ sample is found to be $30 \% \mathrm{SO}_{2}$ by weight. Find out the actual concentration of $\mathrm{H}_{2} \mathrm{SO}_{3}$ (Weight \%) in the acid. The chemical reaction is given below. [A.wt $\mathrm{S}=32$]

$$
\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(C.O.No.4) [Application]

Part C [Problem Solving Questions]

Answer both Questions. Question carries TWENTY marks.

(2Qx20M=40M)
15. $8,000 \mathrm{~kg} / \mathrm{h}$ of solution containing 30% methanol is continuously fed to a distillation column. Distillate is found to contain 94% methanol and waste solution from the column carries 3% methanol. All percentage are by weight. Estimate the flowing
(i) The mass flow rates of distillate and bottom product
(ii) The percentage loss of methyl alcohol?
(C.O.No.3) [Application]
16. A solution contains only methanol and xylene. $100 \mathrm{~kg} \mathrm{~mol} / \mathrm{hr}$ of 45% mole of solution of methanol and rest xylene is fed to the middle of the distillation column as feed. The distillate contains $65 \mathrm{~mole} \%$ of methanol rest xylene and the bottom consist of 85 mole\% xylene rest methanol. What is the flow rate of each stream?
(C.O.No.4) [Application]

