

Roll No						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

MAKE UP EXAMINATION – JAN 2023

Course Code: PHY 101

Course Name: Engineering Physics

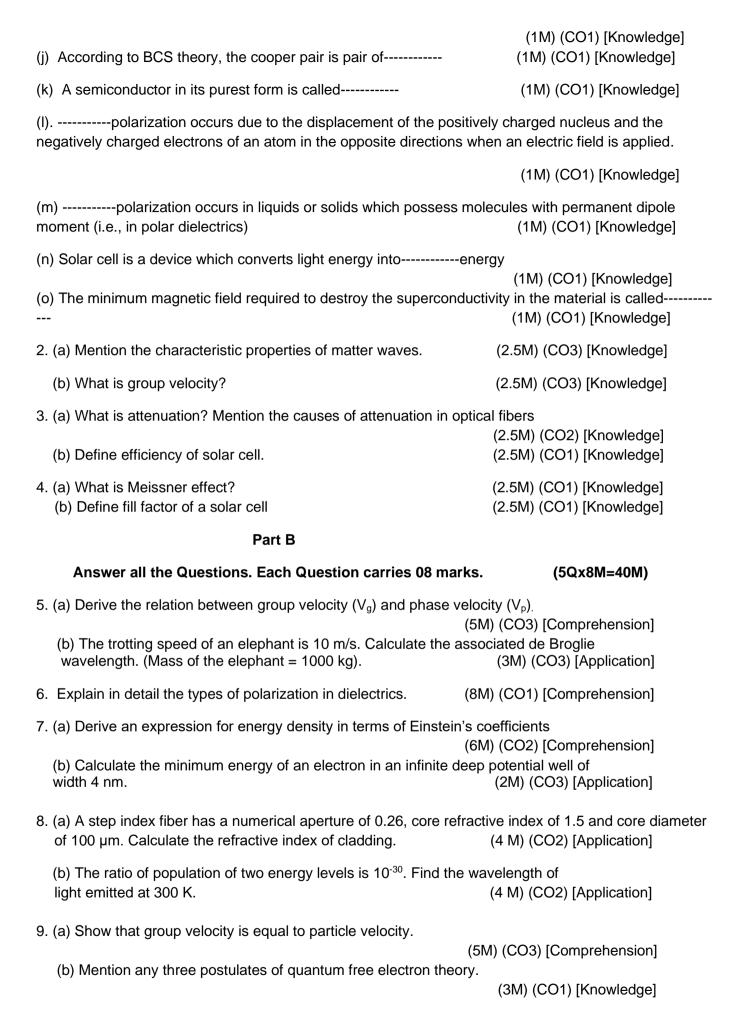
Program: B.Tech(All Programs)

Date: 20-JAN-2023

Time: 1:00 pm to 4:00pm

Max Marks: 100

Weightage: 50 %


Instructions:

- (i) Read all the questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted.
- (iv) Given : Planck's constant $h = 6.625 \times 10^{-34}$ Js; Boltzmann's constant $k_B = 1.38 \times 10^{-23}$ J/K , Speed of light $c = 3 \times 10^8$ m/s, Mass of the electron $m = 9.1 \times 10^{-31}$ kg, Charge of the electron $e = 1.6 \times 10^{-19}$ C

Part A

	Answer all the Questions.	(30 Marks)	Į		
1.	(a) Acronym LASER stands for	(1M) (CO2) [Knowle	dge]		
	(b) The emission of photon without being aided by any external agence	cy is called (1M) (CO2) [Knowledge]			
	(c) Transmission of light in the optical fiber is based on the principle of	f	0.		
	(d) The maximum angle below which a ray of light can enter through of totally internally reflected inside the core of the fiber is called		-		
		(1M) (CO2) [Knowled	0 -		
	(e) When the light enters from denser to rarer medium, the light bend	(1M) (CO2) [Knowle			
	(f)converts light signal into electrical signal in point to point co	ommunication system. (1M)	(CO2)		
	[Knowledge]	(1111)	(002)		
	(g) The de Broglie wavelength (λ) associated with a particle having ma by the relation	ss 'm' and velocity 'v' i (1M) (CO3) [Knowle	•		
	(h) The rate at which the phase of the wave propagates in space is cal	led			
		(1M) (CO3) [Knowle	edge]		

(i) Superconductors are those materials whose-----falls to zero below critical temperature.

Answer any three Questions. Each Question carries 10 marks. (3Qx10M=30M)

10. Derive Schrodinger's time independent one dimensional wave equation.

(10M) (CO3) [Comprehension]

11. Obtain an expression for normalized wave function for a particle in one dimensional potential well of infinite height using Schrodinger's time independent wave equation.

(10M) (CO3) [Comprehension]

- 12. Derive an expression for numerical aperture in terms of refractive indices of core and cladding of an optical fiber. (10M) (CO2) [Comprehension]
- 13. Explain the principle, construction and working of semiconductor laser with neat diagrams. (10M) (CO2) [Comprehension]