\square

PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING

MAKEUP EXAMINATION - JAN 2023
Course Code: CIV 208
Course Name: Fluid Mechanics
Program : B.Tech
Date: 28-JAN- 2023
Time: 1.00 PM to 4.00 PM
Max Marks: 80
Weightage: 40 \%

Instructions:

(i) Read the all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A	
Answer all the Questions. Each Question carries FOUR marks.	(5Qx 4M= 20M)
1. Define fluid and explain the effect of shear stress on solids and fluids.	(C.O.1.) [Knowledge]
2. State Bernoulli's equation and list assumptions made for derivation of Bernoulli's equation.	
	(C.O.3.) [Knowledge]
3. State and Explain Archimedes' principle.	(C.O.2.) [Knowledge]
4. List the major and minor losses through pipe.	(C.O.3.)
[Knowledge]	
5. With neat diagram mention the parts of venturimeter	(C.O.3.) [Knowledge]

Part B

Answer all the Questions. Each Question carries EIGHT marks.

6. An orifice meter is a device with a hole in it, which measures how fast a fluid is flowing, by recording the pressure decrease across the hole. With neat diagram explain the working principle of Orifice meter.
(C.O.2.) [Comprehension]
7. The head loss represents the additional height that the fluid needs to be raised by a pump in order to overcome the frictional losses in the pipe. List and explain the major and minor losses through pipe.
(C.O.3.) [Comprehension]
8. Find the Reynolds number if a fluid of viscosity $0.4 \mathrm{Ns} / \mathrm{m}^{2}$ and relative density of $900 \mathrm{Kg} / \mathrm{m}^{3}$ through a 20 mm pipe with a Velocity of $2.5 \mathrm{~m} / \mathrm{s}$?
(C.O.2.) Comprehension]

Part C

Answer all the Questions. Each Question carries TWELVE marks.

9. Find the head loss due to friction in a pipe of diameter 300 mm and length 50 m , through which water is flow at a velocity of $3 \mathrm{~m} / \mathrm{s}$ using a) Darcy formula, b) Chezy's formula for which $\mathrm{C}=60$ Take kinematic viscosity of water $=0.01$ stoke.
(C.O.3) [Application]
10. Three pipes of $400 \mathrm{~mm}, 200 \mathrm{~mm}$ and 300 mm diameters have lengths of $400 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m respectively. They are connected in series to make a compound pipe. The ends of this compound pipe are connected with two tanks whose difference in levels is 16 m . If co-efficient of friction for these pipes is same and equal to 0.005 , determine the discharge through the compound pipe considering
a) Minor losses also b) Neglecting minor losses
(C.O.3.) [Application]
11. The water is flowing through a pipe having diameter 30 cm and 15 cm at sections 1 and 2 respectively. The rate of flow through pipe is 35 litres $/ \mathrm{sec}$. the section 1 is 6 m above datum and section 2 is 4 m above datum. If the pressure at section 1 is $39.24 \mathrm{~N} / \mathrm{cm}^{2}$.

Find the intensity of pressure at section 2.
(C.O.3.) [Application]

