

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

MAKEUP EXAMINATION - JAN 2023

Course Code: CIV211

Course Name: Design of RC Structural Elements

Program: B. Tech - CIVIL

Date: 23-Jan-2023

Time: 9.30 AM to 12.30 PM

Max Marks: 100

Weightage: 50%

Instructions:

Read the all questions carefully and answer accordingly. Use of IS456 and SP 16 charts are allowed

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries FIVE marks.

(4Qx 5M = 20M)

- 1. Write short note on limit state method of collapse and limit state of serviceability in limit state (C.O.No.1) [Knowledge] design.
- 2. Briefly explain the concept of balanced, over-reinforced and under-reinforced beam sections. (C.O.No.2) [Knowledge]
- 3. List the differences between one-way and two-way slabs.

(C.O.No.3) [knowledge]

4. Classify the different types of column based on type of loading.

(C.O.No.4) [knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries TWENTY marks. (2Qx20M=40M)

5. Design a simply supported slab for a room of size 3m x 7m and it is supported on 230mm thick masonry walls. Slab is subjected to a live load of 2kN/m² and floor finish of 1.5 kN/m². Use M20 grade of concrete and Fe 415 steel. Ignore check for deflection.

(C.O.No.3) [Application]

6. Design the reinforcement for a square column which is subjected to a factored axial load of 3000kN. The effective length of column is 3.0m. Use M20 concrete and Fe415 steel.

(C.O.No.4) [Application]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TWENTY marks.

(2Qx20M=40M)

7. Design a simply supported two-way slab, for a room having clear dimensions, 4m by 5m with 230mm walls all around. Adopt M20 grade concrete and Fe415 HYSD bars. Take floor finish = 0.6 kN/m² and live load = 4kN/m². Assume the corners are prevented from lifting.

(C.O.No.3) [Application]

8. Design the reinforcement for a circular column, subjected to an axial factored load of 2500kN. The effective length is 4 m. Use M20 concrete and Fe415 steel.

(C.O.No.4) [Application]

TABLE A SALIENT POINTS ON THE DESIGN STRESS-STRAIN CURVE FOR COLD-WORKED BARS

(Clause 1.4)

STRESS LEVEL	$f_y = 415 \text{ N/mm}^3$		fy = 500 N/mm*	
(1)	Strain (2)	Stress (3) N/mm²	Strain (4)	Stress (5) N/mm*
0.80 fyd	0.001 44	288-7	0.001 74	347-8
0.85 fyd	0.001 63	306-7	0.001 95	369.6
0.90 fyd	0.001 92	324.8	0.002 26	391.3
0.95 fyd	0.002 41	342-8	0 002 77	413-0
0.975 fyd	0.002 76	351-8	0.003 12	423-9
1 0 fyd	0.003 80	360:9	0.004 17	434-8

Note -- Linear interpolation may be done for intermediate values.

TABLE F STRESS IN COMPRESSION REINFORCEMENT /se, N/mm* IN DOUBLY REINFORCED BEAMS WITH COLD-WORKED BARS

(Clause 2.3 2)

f_{y} ,	d'/d				
N/mm³					
	0.05	0.10	0.15	0.20	
415	355	353	342	329	
500	424	412	395	370	