Date: 30-JAN-2023
Time: 09.30 AM - 12.30 PM
Max Marks: 80
Weightage: 40%

Instructions:

(i) Read all the questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries FOUR marks.

(6Qx 4M= 24M)

1. Define the advantages of Carry-look Ahead Addition.
(C.O.No.3) [Knowledge Level]
2. Differentiate between the two address and three address instruction formats with suitable example.
(C.O.No.2) [Knowledge Level]
3. State the difference between EPROM and EEPROM.
(C.O.No.4) [Knowledge Level]
4. Define data dependency with an example? If two instructions are data dependent can they be executed simultaneously?
(C.O.No.4) [Knowledge Level]
5. List the control sequence for the instruction SUB R1, R2, R3 to be executed in a CPU having single bus organization.
(C.O.No.4) [Knowledge Level]
6. State the difference between Big-Endian and Little-Endian representation.(C.O.No.1) [Knowledge Level]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries TWELVE marks.
(2Qx12M=24M)
7. Explain the internal organization of $32^{*} 8$ Memory chip. State the external connections are required for the chip.
(C.O.No.4) [Comprehension Level]
8. In Ripple Carry Adder, each full adder has to wait for its carry-in from its previous stage full adder. Thus, nth full adder has to wait until all ($\mathrm{n}-1$) full adders to complete their operations. This causes a delay and makes ripple carry adder extremely slow. The situation becomes worst when the value of n becomes very large. Can we overcome this disadvantage? If yes, explain the process in detail with relevant proofs.
(C.O.No.3) [Comprehension Level]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries SIXTEEN marks.
(2Qx16M=32M)
9. Apply Booth algorithm to multiply signed integers of 20 and -13.
(C.O.No.3) [Application Level]
10. Explain the restoring division algorithm in computer arithmetic. Apply restoring division algorithm to perform A / B for the following number. $A=24, B=4$.
(C.O.No.3) [Application Level]

