			Roll No										
	GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS	PRESIDENCY BENGA SCHOOL OF E	LURU		-								
	<u> </u>	MAKEUP EXAMIN	ATION – J	<u>JAN Z</u>	<u>UZ3</u>	Da	ate:	30-J	JAN-2	023			
Course Code: CSE 226							Time : 01:00PM – 04:00PM						
	Course Name: Optimization	Techniques				Ma	ax N	lark	s : 100)			
F	Program : B. Tech					Weightage: 50 %							
	Instructions: (i) Read all the question (ii) Scientific and non-pro	•		•••									_
		Part A [Memory R	ecall Que	estion	ns]								
Answ	ver all the Questions. Ea	ch question carrie	es TWO n	narks				(*	10Q >	(2 M	= 2	20M))
1.	In LPP	_ are expressed in	the form c	of inec	qualit	ies d	or e	qua	tions.				
							(C	.O.N	lo.1)	[Kno	owle	edge	;]
2.	The set of values of dec	ision variables x_j (j = 1, 2, .	,n) †	that s	satis	fy a	ll th	e cor	stra	ints	anc	ł
	non-negativity condition	s of an LP problem	is called _			1	to th	nat L	_P pro	ble	m.		
							(C	.0.N	lo.1)	[Kno	owle	edge	;]
3.	The area which is bound	ded by all the const	raints incl	uding	all th	ne bo	oun	dary	/ poin	ts is	cal	led	
							(C	.0.N	lo.1)	[Kno	owle	edge	;]
4.	If the objective function	is Minimize in the s	implex me	ethod,	then	the	opt	tima	l solu	tion	is N	/lax	
	$z^* = -20$ attains at $x = 2$	and y = 5, then the	original so	olutior	n is _				·				
							(C	.0.N	lo.2)	[Kno	owle	edge	;]
5.	The dual of dual probler	n is known as		·			(C	.0.N	lo.2)	[Kno	owle	edge	;]
6.	When total supply is equ	ual to total demand	in a trans	portat	ion p	orobl	em,	, the	e prob	lem	is s	aid	
	to be						(C	.0.N	lo.3)	[Kno	owle	edge	;]
7.	The method used for so	lving an assignmen	nt problem	is cal	lled _			·					
							(C	.O.N	lo.3)	[Kno	owle	edge	;]
8.	An activity which must	be completed bef	ore one c	or mo	re ot	her	act	ivitie	es sta	art i	s kr	nowr	n
	as						(C	.O.N	lo.4)	[Kno	owle	edge	;]
9.	Draw the network diagra	am for the activity C	must follo	w the	activ	vity /	A, a	nd t	he ac	tivity	y D	mus	st
	follow A and B.						(C	.0.N	lo.4)	[Kno	owle	edge	;]

 10. The ______ is the sequence of critical activities between the start event and end event of a project.

 (C.O.No.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries TEN marks.	(5Q x 10M = 50M)
11. Solve the following LPP using graphical method	
Maximize $z = 3x_1 + 2x_2$	
subject to	
$x_1 - x_2 \ge 1$	
$x_1 + x_2 \ge 3$	
$x_1, x_2 \ge 0$	
	(C.O.No.1) [Comprehension]
12. Solve by using Big-M method	
Maximize $z = 3x_1 + 2x_2$	
Subject to	
$2x_1 + x_2 \le 2$	
$3x_1 + 4x_2 \ge 12$	
$x_1, x_2 \ge 0$	(C.O.No.2) [Comprehension]
13. Solve the following LPP using dual simplex method	
Minimize $z = 5x + 6y$	
Subject to	
$x + y \ge 2$	
$4x + y \ge 4$	(C.O.No.2) [Comprehension]
$x, y \ge 0.$	
14. Obtain the initial solution for the following TP using North-W	est corner rule and Vogel
approximation method.	

	D1	D2	D3	D4	Supply
01	1	2	3	4	6
02	4	3	2	0	8
O3	0	2	2	1	10
Demand	4	6	8	6	

(C.O.No.3) [Comprehension]

15. Draw the PERT diagram and determine critical path and the total duration of the following project.

Activity	1 – 2	1 - 3	1 – 5	2 – 3	2 - 4	3 - 4	3 – 5	3 – 6	4 – 6	5 – 6
Duration	8	7	12	4	10	3	5	10	7	4

(C.O.No.4) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries FIFTEEN marks.

 $(2Q \times 15M = 30M)$

16. Solve the following by simplex method

Maximize
$$z = x + 1.5y$$

subject to
 $x + 2y \le 160,$
 $3x + y \le 240,$
 $x, y \ge 0.$ (C.O.No.2) [Comprehension]

17. A company is producing a single product and selling it through five agencies situated in different cities. All of a sudden, there is a demand for the product in five more cities that do not have any agency of the company. The company is faced with the problem of deciding on how to assign the existing agencies to dispatch the product to the additional cities in such a way that the travelling distance is minimized. The distances (in km) between the surplus and deficit cities are given in the following distance matrix.

Deficit city Surplus city	I	II	III	IV	v
Α	160	130	175	190	200
В	135	120	130	160	175
С	140	110	155	170	185
D	50	50	80	80	110
E	55	35	70	80	105

Determine the optimum assignment schedule.

(C.O.No.3) [Comprehension]