	Roll No.											
PRESIDENCY UNIVERSITY BENGALURU SCHOOL OF ENGINEERING												
MAKE UP EXAMINATION – JAN 2023												
Course Code: ECE 210 Course Name:Analog Communications Programme :B.Tech				Ti Ma	me: ax N	: 9:3 Iark	JAN-2 0 am 3 s : 10 e : 50	n to 00	-	:30	pm	
Part A[Memory Recall Questions]												
Answer all Questions. Each question carries TWO mark.					(15QX2M=30M)							
1) Which of the following is used to convert PPM in	nto PWM				(C	.0.1	No.4) [ŀ	۲no	wle	dge	e]
A) Clipping Circuit												
B) Bi-stable Multi-vibrator												
C) Integrating the PPM signal												
D) Differentiating the PPM signal												
2) A PWM signal can be generated by					(C	.0.1	lo.4) [ŀ	Kno	wle	dge)
A) mono-stable Multi-vibrator												
B) Direct FM												
C) Neither of them												
D) Both of them												
3) Quantization noise can be reduced by increasing the no. of samples per seconds. It is true												
					(C	.0.1	lo.4) [ŀ	۲no	wle	dge	9]
A) Yes, it is												
B) No, it is												

- C) Not necessarily
- D) None of these

4) In pulse modulation, the no. of samples required to ensure no loss of information is given by

		(C.O.No.4) [Knowledge]
5) In :	 A) All of the B) Fourier Transform C) Parseval's theorem D) Nyquist theorem a super heterodyne radio receiver 	(C.O.No.4) [Knowledge]
	A) RF amplifier normally operates at 455 kHz above carrier frequer	ю
	B) mixer input must be tuned to the signal frequency	
	C) local oscillator operates below signal frequency	
	D) local oscillator frequency is double the IF	
6) Tra	ansmitter power remains constant in modulation.	(C.O.No.4) [Knowledge]
	A) PAM	
	B) PWM	
	C) PPM	
	D) PTM	
7) Th	e VSB wave can be assumed to be generated by a	(C.O.No.2) [Knowledge]
	A) Side band shaping filter along with DSBSC	
	B) Side band shaping filter along with FM	
	C) Side band shaping filter along with AM	
	D) Side band shaping filter along with SSB	
8) Wł	nich Modulation technique requires High Power	(C.O.No.1) [Knowledge]
	A) Standard AM	
	B) DSBSC	
	C) SSB	
	D) VSB	
9) Wł	nich Modulation technique requires LowPower	(C.O.No.2) [Knowledge]
	A) Standard AM	
	B) DSBSC	
	C) SSB	
	D) VSB	

10) Which Modulation technique has maximum transmission efficiency	(C.O.No.2) [Knowledge]
A) Standard AM	
B) DSBSC	
C) SSB	
D) VSB	
11) Which Modulation technique is related to Nonlinear type	(C.O.No.1) [Knowledge]
A) Standard AM	
B) DSBSC	
C) SSB	
D) VSB	
12) Demodulation of FM with frequency discrimination method uses	(C.O.No.3) [Knowledge]
A) clamped circuit	
B) Biased circuit	
C) Bypass circuit	
D) Tuned Circuit	
13) Multi-vibrator used in zero crossing detector is	(C.O.No.3) [Knowledge]
A) Tri-stable	
B) Bi-stable	
C) Quasi Mono stable	
D) Mono stable	
14) AM spectrum consists of	(C.O.No.1) [Knowledge]
A) Carrier frequency	
B) Upper sideband	
C) Lower sideband	
D) Carrier frequency with both upper and lower sideband	
15) Single-tone amplitude modulation consists of	(C.O.No.1) [Knowledge]
A) A large number of frequency components	
B) Only one frequency component	
C) No frequency components	
D) infinite number of frequency components	

Part B[Thought Provoking Questions]

Answer **all** Questions. **Each** question carries **TEN** marks.

16) A Zero Crossing Detector Circuit is used to track the changing in the sine/pulse waveform from positive to negative or vice versa while it crosses Zero voltage. With a neat block diagram and waveform show zero cross detector for frequency demodulation.

(C.O.No.3) [Comprehension]

17) Explain Pulse Amplitude Modulation with neat block diagram and waveform.

(C.O.No.4) [Comprehension]

18) Derive the expression for single tone modulation frequency Modulation.

(C.O.No.3) [Comprehension]

19) With neat diagram and waveforms explain detection of message signal from amplitude modulated signal using envelop detector and bring out the significance of RC time constant.

(C.O.No.1) [Comprehension]

(2Qx15M=30M)

Part C [Problem Solving Questions]

Answer all Questions. Each question carries FIFTEEN marks.

20. The modulating signal is a single sinusoid given by $m(t)=2cos(1000\pi t)$. Sketch (frequency domain) the corresponding DSBSC and SSBSC signals for a carrier frequency of 15KHz.

(C.O.No.2) [Comprehension]

21. The equation of an amplitude modulated wave is given as V=100[1+0.2cos(2πX1000t)]cos(2πX100000t) find all frequencies present and their respective amplitude(need to plot frequency spectrum) also determine the value of modulation index.

(C.O.No.1) [Comprehension]

(4Qx10M=40M)