PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF INFORMATION SCIENCE END TERM EXAMINATION - JUN 2023

Semester : Semester IV - 2021
Course Code : MAT2028
Course Name : Sem IV - MAT2028 - Graph Theory Program : BSD

Date: 16-JUN-2023
Time : 1.00PM - 4.00PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

(7 X 4 = 28M)

1. Define Hamiltonian graph with an example.
(CO2) [Knowledge]
2. Define Bipartite graph with an example.
(CO2) [Knowledge]
3. Draw a complete graph on 6 vertices and $K_{3,3}$ graph.
(CO2) [Knowledge]
4. Define pendant and isolated vertex of a graph with an example for each.
(CO1) [Knowledge]
5. Suppose that tree T has 2 vertices of degree 2,4 vertices of degree 3 and 3 vertices of degree 4 , then what are the number of pendant vertices in T?
(CO3) [Knowledge]
6. Define Complete Binary tree with an example.
(CO3) [Knowledge]
7. Define induced subgraph with an example.

PART B

ANSWER ALL THE QUESTIONS

($4 \times 11=44 \mathrm{M})$
8. (a) Discuss the Konigsberg bridge problem.
(b) Check if the following graphs G and H are Euler graph as well as Hamiltonian graph.

(CO2) [Comprehension]
9. Prove that a graph G is a tree if and only if there is one and only path between every pair of vertices in G.
(CO3) [Comprehension]
10. Find the adjacency matrix and incidence matrix for the following graph.

(CO1) [Comprehension]
11. (a) State and prove Handshaking theorem.
(b) Find the total number of vertices for the graphs G, when G has 10 edges, with 2 vertices of degree 4 and all others are of degree 3.
(CO1) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

($2 \times 14=28 \mathrm{M}$)
12. Explain Breadth-First search algorithm, and Use Breadth-First search algorithm to produce a spanning tree for the graph given below starting from vertex \mathbf{e}.

(CO3) [Application]
13. (a) Explain the Kruskal's algorithm.
(b) Apply Dijkstra's algorithm to the following graph to find the shortest path from u to v.

