## PRESIDENCY UNIVERSITY BENGALURU <br> SCHOOL OF ENGINEERING <br> END TERM EXAMINATION - JUN 2023

Semester : Semester IV - 2021
Course Code : CSE3078
Course Name : Sem IV - CSE3078 - Cryptography and Network Security Program : B.Tech - All Programs

SET - A

Date : 22-JUN-2023
Time : 9.30AM - 12.30PM
Max Marks : 100
Weightage : 50\%

## Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

## PART A

## ANSWER ALL THE QUESTIONS

(10 X 2 = 20M)

1. What is meant by denial of service attack? Is it active or passive attack?
(CO1) [Knowledge]
2. List out the requirements of Kerberos.
(CO4) [Knowledge]
3. What is the condition to select the public key in RSA?
(CO3) [Knowledge]
4. What are the two general approaches to attacking a cipher?
(CO1) [Knowledge]
5. List out any 4 security mechanisms defined by OSI security architecture.
(CO1) [Knowledge]
6. Find out the prime factorization of number 1560.
(CO2) [Knowledge]
7. List the operations used in DES.
(CO2) [Knowledge]
8. What are the benefits of IP Security?
(CO4) [Knowledge]
9. List out attacks are addressed by digital signature?
(CO3) [Knowledge]
10. Define Commutative group in number theory.
(CO2) [Knowledge]

## PART B

## ANSWER ALL THE QUESTIONS

11. Using Miller Rabins primality testing. Use the same to test the primality of 271,341 by considering base 2.
(CO2) [Comprehension]
12. Encrypt the message "COE" using Hill cipher with the following key matrix.
$\mathrm{K}=\begin{array}{ccc}17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19\end{array}$
(CO1) [Comprehension]
13. In a public-key system using RSA, you intercept the ciphertext $C=20$ sent to a user whose public key is $e=13, n=77$. What is the plaintext $M$ ?
(CO3) [Comprehension]
14. Define Digital Signature. Which key is used to derive and verify the Digital Signature? Explain NIST Digital Signature Algorithm.
(CO3) [Comprehension]
15. What are the services provided by IPSec? Implement the IPSec architecture using Encapsulating security payload with neat diagram.
(CO4) [Comprehension]

## PART C

ANSWER ALL THE QUESTIONS
(2 X $15=30 \mathrm{M}$ )
16. Define primitive root? Consider the following inputs with respect to Diffie-Hellman key exchange Algorithm.Prime Number $=11$
Sender's Private Key $=6$
Receiver's Private Key = 8
Consider any primitive root less than 6.
Calculate the shared key for the given inputs.
(CO3) [Application]
17. Using Chinese Remainder Theorem find the value of $x$ for the given set of congruent equations.
$x \equiv 1(\bmod 5)$
$x \equiv 2(\bmod 7)$
$x \equiv 3(\bmod 9)$
$x \equiv 4(\bmod 11)$

