Roll No

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING MID TERM EXAMINATION - APR 2023

Semester: Semester IV - 2021 Date: 12-APR-2023

Course Code: CIV2013 **Time**: 9.30AM - 11.00AM

Course Name: Sem IV - CIV2013 - Analysis of Determinate Structures

Program : CIV Weightage : 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

(5 X 2 = 10M)

Max Marks: 50

1. Degree of Indeterminacy of a continuous beam loaded as shown in the fig is _____

a) 1 (CO1) [Knowledge]

b) 2

c) 4

d) 5

2. The total Degree of Indeterminacy for the truss loaded as shown in Fig is _____

- a) 1 (CO1) [Knowledge]
- b) 2
- c) 4
- d) None of the above
- Number of available conditions of equilibrium for concurrent force system are _____a) 2 (CO1) [Knowledge]
 - . ` ~
 - b) 3
 - c)6
 - d) None of the above
- 4. The Kinematic degree indeterminacy of the truss shown in Fig is _____

- a) 2 (CO1) [Knowledge]
- b) 3
- c) 4
- d) 5

5. The Degree of Indeterminacy for the fixed beam loaded as shown in the fig is _____

PART B

ANSWER ALL THE QUESTIONS

(2 X 10 = 20M)

6. Calculate the support reactions and determine the forces in all the members of a truss loaded as shown in the fig by method of joints.

(CO1) [Comprehension]

7. The hinged symmetrical Parabolic arch of span 50 m and central rise 6 m is carrying a point load of 200 kN at distance 12.5m from left support. Calculate the support reactions and draw the bending moment diagram.

(CO2) [Comprehension]

ANSWER THE FOLLOWING QUESTION

(1 X 20 = 20M)

8. Calculate the support reactions and find the forces in all the members of a truss loaded as shown in the fig by method of joints.

(CO1) [Application]