

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF MANAGEMENT MID TERM EXAMINATION - APRIL 2023

Semester: LATERAL ENTRY- 2022 BATCH

Date: 18-APR-2023

Course Code: MAT2071 Time:2:00 PM-3:30PM

Course Name : Mathematics for Engineers

Program : B.TECH

Max Marks : 50

Weightage : 25%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and non-programmable calculator are permitted.

(iv) Do not write any information on the question paper other than Roll Number.

Part A

Answer all the Questions. Each question carries two marks.

(5Qx 2M=10M)

1. If 3,6,9 are the eigen values of A then list the eigen values of A². (CO1)

(CO1) [Knowledge]

2. State the formula of regression lines of x on y.

(CO1) [Knowledge]

3. If
$$u=x^2+y^2$$
 then $\frac{\partial^2 u}{\partial y^2} = -----$

(CO2) [Knowledge]

4. Is $z = \frac{x^2 - y^2}{x - y}$ homogeneous function or not? If yes, then identify the degree of z.

(CO2) [Knowledge]

5. Define Jacobian of x and y with respect to u and v.

(CO2) [Knowledge]

Part B

Answer all the Questions. Each question carries five marks.

(4Qx 5M=20M)

6. Estimate the solution of the following system of equations by Gauss elimination method

$$2x + 5y + 7z = 52$$

$$2x + y - z = 0$$

(CO1) [Comprehension]

$$x + y + z = 9$$

7. Locate the correlation coefficient for the following values of x and y

(CO1) [Comprehension]

Х	1	2	3	4	5
у	2	5	3	8	7

8. If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$$
, locate $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

(CO2) [Comprehension]

9. Estimate
$$\int_{0}^{5} \int_{0}^{x^2} x(x^2 + y^2) dy \ dx$$
.

(CO2) [Comprehension]

Part C

Answer all the Questions. Each question carries ten marks.

(2Qx 10M=20M)

10. Compute the Eigen values and Eigen vectors of the matrix
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

(CO1) [Application]

11. Compute the extreme values of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$.

(CO2) [Application]