PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING
 MID TERM EXAMINATION - APR 2023

Semester : Semester II - 2022
Course Code : MEC2016
Course Name : Sem II - MEC2016 - Material Science and Metallurgy Program : MEC

Date : 18-APR-2023
Time : 9.30AM - 11.00AM
Max Marks : 50
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE FIVE QUESTIONS

$5 \times 2=10 \mathrm{M}$

1. What is the Atomic Packing Factor for a FCC unit cell?
a) 0.52
(CO1) [Knowledge]
b) 0.68
c) 0.74
d) 0.86
2. Which one of the following is not a type of primary bonding?
a) Covalent Bond
(CO1) [Knowledge]
b) Ionic Bond
c) Hydrogen Bond
d) Metallic Bond
3. Which one of the following is the strongest of all bonds?
a) Metallic Bond
b) Ionic Bond
c) Covalent Bond
d) Vanderwals Bond
4. \qquad is defined as the chemically homogenous, physically different and mechanically seperable part of a system.
a) Phase
(CO2) [Knowledge]
b) State
c) Compound
5. What is the solubility limit of sugar in water at $20^{\circ} \mathrm{C}$?
a) 55% wt Sugar
(CO2) [Knowledge]
b) 60% wt Sugar
c) 65% wt Sugar

PART B

ANSWER ALL THE TWO QUESTIONS

$2 \times 10=20 M$
6. Explain the following types of defects with the help of neat diagrams.
a) Vacancy
b) Interstitial and Substitutional defect
(CO1) [Comprehension]
7. Briefly explain the two fick's law of diffusion.
(CO2) [Comprehension]

PART C

ANSWER ALL THE TWO QUESTIONS

$2 \times 10=20 M$
8. For the following miller indices for planes, show its corresponding plane in a simple cubic unit cell.
a) $\left(\begin{array}{lll}0 & 1\end{array}\right)$
b) $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
c) (100)
d) (010)
e) $\left(\begin{array}{ll}1 & 1\end{array}\right)$
(CO1) [Application]
9. For the following miller indices for vectors, show its corresponding vector in a simple cubic unit cell.
a) $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$
c) $\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 2 & 1]\end{array}\right.$
e) [2 2 2]

