PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING
 MID TERM EXAMINATION - MAY 2023

Semester : Semester IV - B.Tech CSE - 2021
Date : 18-MAY-2023
Course Code : CSE2007
Course Name : Sem IV - CSE2007 - Design and Analysis of Algorithms Program : B.Tech. Computer Science and Engineering

Time : 2.00 PM - 3.30 PM
Max Marks : 50
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

1. Derive the time complexity for the given relation using Master's method $T(n)=T(n / 3)+1$ for $n>1$
(CO1) [Knowledge]
2. Name the algorithm design techniques to solve the following problem.
(i) Insertion Sort
(ii) Mergesort
3. Find the running time of the following program segment :
```
void main ()
```

\{
int i, j;
for (i=1; i<=n;i++)
for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{n} 2$; $\mathrm{j}++$)
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} 3 ; \mathrm{i}++$)
$\mathrm{x}=\mathrm{y}+\mathrm{z}$;
\}
(CO1) [Knowledge]
4. What is an Algorithm? Explain the properties of an Algorithm.
5. Calculate the time complexity for the given recurrence relation using Master's theorem.

$$
T(n)=8 T(n / 2)+n^{\wedge} 3
$$

(CO1) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

(4 X 5 = 20M)
6. Write the algorithm for Insertion sort and give its time complexity
(CO2) [Comprehension]
7. Write the algorithm for Binary search and derive its time complexity
8. Explain the general plan for analysis of recursive algorithms
(CO2) [Comprehension]
(CO1) [Comprehension]
9. Apply Strassen's Matrix Multiplication algorithm to compute the resultant matrix of size $2 * 2$.
$A=[1,2: 5,6]$
$B=[4,6: 2,3]$
(CO2) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

10. Apply merge sort algorithm for the given unsorted array and give its all three time complexity. arr $=\{38,27,43,3,9,82,10\}$
(CO2) [Application]
11. Write the algorithm for Quick sort and Derive its time complexity for Best case using backward substitution method
(CO2) [Application]
