PRESIDENCY UNIVERSITY

 BENGALURU
SCHOOL OF ENGINEERING
 MID TERM EXAMINATION - MAY 2023

Semester : Semester IV - B.Tech CSE - 2021
Date : 18-MAY-2023
Course Code : CSE2009
Course Name : Sem IV - CSE2009 - Computer Organization and Architechture
Time : 2.00 PM - 3.00 PM
Max Marks : 50
Program : B.Tech. Computer Science and Engineering
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

(5 X 2 = 10M)

1. Name the different types of computers
(CO1) [Knowledge]
2. Distinguish between CISC and RISC family of processors
(CO1) [Knowledge]
3. Explain Basic Performance Equation? Also Define Possibilities for increasing the clock rate
(CO1) [Knowledge]
4. Explain Indirect and Index addressing modes with suitable examples.
(CO1) [Knowledge]
5. Explain different types of Memories
(CO1) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

(4 X $5=20 \mathrm{M}$)
6. Explain SAFE PUSH and SAFE POP in Stack
(CO1) [Comprehension]
7. Evaluate $(\mathrm{A}+\mathrm{B}) /(\mathrm{C}+\mathrm{D})$ in Three address, Two address and one address instruction
(CO1) [Comprehension]
8. Explain Generation of computer
(CO1) [Comprehension]
9. Define the functions of following registers:

1. MAR
2. MDR
3. IR
4. PC
5. Rn
(CO1) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

10. Represent the following pairs of signed decimal numbers in 4 bit 2's complement numbers and add them. State whether overflow occurs or not.
i) +2 and +3
ii) +4 and +5
iii) +7 and -3
iv) -6 and -2
(CO1) [Application]
11. . Register R1 and R2 of computer contain the decimal value 1800 and 2600 respectively. Identify the addressing mode in each instruction and calculate effective address of the source/destination operand in each of the following instructions? (Assume 32-bit word length)
(i) Load 42(R1), R2
(ii) Move \#3000, R4
(iii) Store 30(R1, R2), R4
(iv) Add -(R2), R4
(v) Subtract (R1)+, R4
(vi) $\operatorname{Mov}(R 1, R 2), R 4$
(vii) ADD 100(R1, R2), R4

Where, $\mathrm{R} 2=1200$ and $\mathrm{R} 3=2400$
(CO1) [Application]

