PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING
 MID TERM EXAMINATION - APR 2023

Semester : Semester IV -2021
Date : 15-APR-2023
Course Code : CSE2018
Time : 9:30AM - 11AM
Course Name : Sem IV - CSE2018 - Theory of Computation
Max Marks : 50
Program : ALL PROGRAM
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS
$(5 \times 2=10 \mathrm{M})$

1. Define alphabet. Give example for alphabet set of decimal numbers.
(CO1) [Knowledge]
2. Explain Kleene Closure of an alphabet with example.
(CO1) [Knowledge]
3. Illustrate any two operations on string with examples.
(CO1) [Knowledge]
4. What is extended transition function? Explain with an example.
(CO2) [Knowledge]
5. What is meant by DFA? Explain with an example.
(CO2) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

6. Construct a DFA to accept strings of a's and b's having an even number of a's and an odd number of b.
(CO1) [Comprehension]
7. Construct a DFA to accept the language.
$L=\left\{w \in\{a, b\}^{*} ; w\right.$ has all strings that ends with $\left.a b b\right\}$
8. Design an NFA (non-deterministic finite automata) to accept the set of strings of 0's and 1 's that either (a) end in 010 and have 011 somewhere preceding, or
(b) end in 101 and have 100 somewhere preceding.
(CO2) [Comprehension]
9. Construct NFA that accepts strings of a's and b's that are ending with ab/ba. Show the sequence of moves made by the NFA for the strings "abab" and "babaa". Find if the strings are accepted or rejected by NFA.
(CO2) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

10. Minimize the following DFA to its equivalent machine.

$\boldsymbol{\delta}$	$\mathbf{0}$	$\mathbf{1}$
$\rightarrow \mathrm{A}$	B	F
B	G	C
${ }^{*} \mathrm{C}$	A	C
D	C	G
E	E	F
F	C	G
G	G	E
H	G	C

(CO2) [Application]
11. Develop an equivalent DFA of the following e-NFA.

