Roll No						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING MID TERM EXAMINATION - MAY 2023

Semester: Semester IV - 2021 Date: 19-MAY-2023

Course Name: Sem IV - CSE2018 - Theory of Computation Max Marks: 50

Program : CAI Weightage : 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the guestion paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

(5 X 2 = 10M)

1. Define alphabet. Give example for alphabet set of decimal numbers.

(CO1) [Knowledge]

- 2. Define the following terms with an example for each.
 - 1. Length of the string
 - 2. Reversal

(CO1) [Knowledge]

3. Define Epsilon Closure of a state with an example.

(CO2) [Knowledge]

4. Define Positive Closure with a suitable example.

(CO1) [Knowledge]

5. What is meant by DFA? Explain with an example.

(CO2) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

(4 X 5 = 20M)

6. Convert the following NFA with ϵ -transition into its equivalent DFA.

(CO2) [Comprehension]

7. Compare the differences between DFA, NFA, and ε -NFA.

(CO2) [Comprehension]

8. Design a DFA L(M) = {w | w \in {0, 1}*} and w is a string that does not contain consecutive 1's.

(CO1) [Comprehension]

9. Construct a DFA to accept strings of 0's and 1's ending with the string 110.

(CO1) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

(2 X 10 = 20M)

10. Minimize the following DFA.

(CO2) [Application]

11. Construct a NFA to accept all strings ending in ab over an alphabet {a, b} and obtain its equivalent DFA

(CO2) [Application]