| Roll | No |
|------|----|
|------|----|



# PRESIDENCY UNIVERSITY BENGALURU

# SCHOOL OF ENGINEERING MID TERM EXAMINATION - APR 2023

Semester : Semester VI - 2020

Course Code : CSE3014

**Course Name :** Sem VI - CSE3014 - Fundamentals of Natural Language Processing **Program :** CAI,CST Date : 15-APR-2023 Time : 09:30AM -11AM

Max Marks: 60

Weightage: 30%

## Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and non-programmable calculator are permitted.

(iv) Do not write any information on the question paper other than Roll Number.

## PART A

# ANSWER ALL THE QUESTIONS

1. Mention the name of the group who published a report in 1966 about the lack of growth in NLP.

(CO1) [Knowledge]

(5 X 2 = 10M)

**2.** Morphological segmentation involves splitting a word into individual units. Mention the name of those units.

(CO1) [Knowledge]

**3.** Stopwords are words which are very frequently used in NLP. Consider a situation where weigh the counts of words by their tf-idf values. Mention the value of a the weighted count (weighted by the product of the tf and the idf) of a stop word, that is present in all the documents of a corpus.

(CO2) [Knowledge]

4. Mention any 2 multilingual pre-trained language models for Indian languages

(CO2) [Knowledge]

5. List any two activation functions, their formulae and the range of values that they take.

(CO2) [Knowledge]

#### ANSWER ALL THE QUESTIONS

#### (4 X 5 = 20M)

6. Consider a sentiment analysis classifier that classifies texts into 3 classes - positive, negative, and neutral. The results of the classification are as follows in the given confusion matrix. Confusion Matrix for 300 documents, of which 100 documents are

| positive, 100 documents are neutral and 100 documents are negative. |          |         |          |  |  |  |
|---------------------------------------------------------------------|----------|---------|----------|--|--|--|
|                                                                     | Positive | Neutral | Negative |  |  |  |
| Positive                                                            | 50       | 30      | 20       |  |  |  |
| Neutral                                                             | 40       | 50      | 10       |  |  |  |
| Negative                                                            | 10       | 30      | 60       |  |  |  |

Assuming that each class actually has **100 documents**, calculate the **accuracy of the classifier**, as well as the **precision**, **recall**, **and F1-scores** of **all 3 classes**.

(CO1) [Comprehension]

7. Compute the **edit distance** for the given pair of words and substitution cost which you are allotted based on the **last digit of your roll number**. Assume an insertion cost of +1 and a deletion cost of +1. Allotments of word1, word2, and substitution costs, based on roll number.

| Roll No.<br>Ending   | 0       | 1      | 2     | 3     | 4     | 5       | 6      | 7     | 8     | 9     |
|----------------------|---------|--------|-------|-------|-------|---------|--------|-------|-------|-------|
| Substitution<br>Cost | 1       | 1      | 1     | 1     | 1     | 2       | 2      | 2     | 2     | 2     |
| word1                | sitting | donkey | grain | table | hello | kitten  | money  | grail | stall | heln  |
| word2                | kitten  | money  | grail | stall | helm  | sitting | donkey | grain | table | hello |

(CO1) [Comprehension]

- 8. Assume that we are using a small, 26-dimension vector to represent our words, such that each dimension represents the count of the character (from a to z) of our words. Eg. "sandeep" = [1, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. For each word pair, compute the dot product and cosine similarity.
  - word1 = sitting, word2 = kitten
  - word1 = donkey, word2 = money
  - word1 = grain, word2 = grail
  - word1 = table, word2 = stall
  - word1 = hello, word2 = helm

(CO2) [Comprehension]

- 9. Consider the following documents (Yes, each bullet point is a **document**):
  - Principles of Artificial Intelligence
  - Artificial Intelligence for Gaming
  - Artificial Intelligence and Machine Learning
  - Artificial Intelligence for Game Development

Assume only the following terms:

- Principles
- Artificial
- Intelligence
- Gaming
- Machine
- Learning
- Game
- Development

Write down the **raw counts matrix**, and generate the **TF-IDF matrix**, whose elements are weighted by the product of the **TF** and the **IDF**. Consider that the logarithm we are using is in **base 10**.

### ANSWER ALL THE QUESTIONS

**10.** A Naive Bayes classifier is used to classify a number of reviews. The following table displays the annotated labels:

| Sentence                                                        | Label |
|-----------------------------------------------------------------|-------|
| I will always cherish the original misconception I had of you   | NEG   |
| I find it rather easy to portray a businessman                  | POS   |
| Being bland, rather cruel and incompetent comes naturally to me | POS   |
| It is like an all-star salute to Disney's cheesy commercialism  | NEG   |
| Detecting sarcasm is very easy ;)                               | POS   |

**Predict** the class of the reviews using the following table of counts with add-1 smoothing to calculate the scores of each sentence for each class. Assume a prior probability of 0.5 for both the positive and negative classes.

| word          | count(+) | count(-) | word          | count(+) | count(-) |
|---------------|----------|----------|---------------|----------|----------|
| all-star      | 3        | 0        | I             | 5        | 5        |
| bland         | 1        | 3        | incompetent   | 1        | 4        |
| businessman   | 2        | 1        | misconception | 1        | 3        |
| cheesy        | 2        | 3        | naturally     | 3        | 1        |
| cherish       | 5        | 0        | original      | 3        | 1        |
| commercialism | 2        | 2        | rather        | 2        | 2        |
| cruel         | 0        | 3        | salute        | 1        | 0        |
| detecting     | 2        | 1        | sarcasm       | 2        | 4        |
| easy          | 4        | 0        | very          | 3        | 1        |
| find          | 3        | 2        | ;)            | 5        | 0        |
|               |          |          |               |          |          |

**Construct** the **confusion matrix** and **calculate** the **accuracy of the classifier**, as well as the **precision**, **recall and F1-score** for **BOTH** the positive and negative classes.

(CO2) [Application]

11. Consider the following movie review: "When I need an **amusing** diversion, nothing helps quite like watching one of those *dreadful* 50's sci-fi flicks. Ed Wood's *infamous* film is a good choice too. I can forgive it for some of its, let us say ... *imperfections*: anthropomorphic aliens who speak English; women aliens who wear lipstick; the *hammy, sophomoric* acting; the *dime-store* special effects ... But there's really no excuse for a mickey mouse script. You get the feeling that the film was put together by a *quarrelsome* committee of third graders, and aimed at an audience of chimpanzees. And yet, specifically because of its technical *crudeness*, the film is **fun** to watch. We may not want to admit it, but the film gives us viewers a chance to feel **superior** to Ed Wood; we get to conjecture that even we could make a film that has more **credibility** than that."

To help you out, words in the positive lexicon are in **boldface** and those in the negative lexicon are in *italics*. Assume that we have the following features with their weights:

| Features and their weights. NOTE: <b>bias</b> is given a value of <b>0.1</b> . |                                                         |        |  |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------|--------|--|--|
| FeatureID                                                                      | Feature                                                 | Weight |  |  |
| x1                                                                             | Count of words in the positive lexicon of the document  | 2      |  |  |
| x2                                                                             | Count of words in the negative lexicon of the document  | -4     |  |  |
| x3                                                                             | Count of "!" in the document                            | 1      |  |  |
| x4                                                                             | Count of "?" in the document                            | 0.5    |  |  |
| x5                                                                             | Count of sentences in the document                      | 1.5    |  |  |
| x6                                                                             | Natural Logarithm of the Count of words in the document | 1.25   |  |  |
| bias                                                                           | Classifier bias                                         | 1      |  |  |
|                                                                                |                                                         |        |  |  |

Using the above learnt weights, **find out** whether the film is positive (y = 1) or negative (y = 0). (CO2) [Application]

## (2 X 15 = 30M)