PRESIDENCY UNIVERSITY **BENGALURU**

SET - A

SCHOOL OF ENGINEERING **END TERM EXAMINATION - JUN 2023**

Semester : Semester II - 2022 Course Code : MAT2004 Course Name : Sem II - MAT2004 - Discrete Mathematical Structures Program : CAI,COM,CSE&CSG

Date: 23-JUN-2023 Time: 1.00PM - 4.00PM Max Marks: 100 Weightage: 50%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the guestion paper other than Roll Number.

PART A

(10 X 2 = 20M)

- **1.** Write P(S) where $S=\{a,b\}$.
- **2.** State the inverse of the statement $p_1 \rightarrow p_2$.

3.	Find the number of 5-combinations from a set with 4 elements when repetition of e	elements is allowed. (CO4) [Knowledge]
4.	For the relation {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} on the set {1, 2, 3, 4}, symmetric, and whether it is antisymmetric.	decide whether it is
		(CO2) [Knowledge]
5.	List the truth values of propositions $S(2, 1)$ and $S(3, 0)$ for the statement such where x and y are variables.	that $S(x,y)$: $y=x+2$,
		(CO1) [Knowledge]
6.	Write the truth table for lp/g.	
		(CO1) [Knowledge]
7.	What are the values of $\lfloor 3.6 floor$ and $\lceil -2.4 floor$.	
		(CO2) [Knowledge]
8.	Find the maximal element for the set {a, b, c, d, e, f}.	
	d t	(CO3) [Knowledge]

(CO2) [Knowledge]

(CO1) [Knowledge]

- 9. Write the relation for the given poset and draw the directed graph of ({1, 2, 3, 4}, ≤). (CO2) [Knowledge]
- **10.** Find the upper bound for the element {b,c}

(CO3) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

11. Show that the premises "If you send me an e-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

(CO1) [Comprehension]

 $(5 \times 10 = 50M)$

12. Show that a mapping $f: R \to R$ defined by f(x) = 3 - 9x for $x \in R$ is a bijective map from R to R and hence find out the inverse of f.

(CO2) [Comprehension]

13. How many ways are there to put four different employees into three indistinguishable offices, when each office can contain any number of employees? Also list all the possible ways.

(CO4) [Comprehension]

14. Let R be the relation on the set of real numbers such that aRb iff a – b is an integer. Explain R is an equivalence relation.

(CO2) [Comprehension]

15. a) Let P = {1, 2, 3, 4, 5} and \leq be the relation "less than or equal to". Draw the Hasse diagram of (P, \leq).

b) Let X = {2, 3, 6, 12, 24, 36}, and the relation \leq be such that x \leq y if x divides y. Draw the Hasse diagram of (X, \leq).

(CO3) [Comprehension]

(2 X 15 = 30M)

PART C

ANSWER ALL THE QUESTIONS

16. Prove that $(P(X), \subseteq)$ is a Boolean algebra, where $X = \{a, b, c\}$

(CO3) [Application]

a). Obtain PDNF of p→((p→q)∧¬(¬q∨¬p)) using truth table.
b). Verify the validity of the following arguments: "All Computer Science professors have studied Java. Raju is a Computer Science Professor. Therefore Raju has studied Java".

(CO1) [Application]