## PRESIDENCY UNIVERSITY

 BENGALURU
# SCHOOL OF ENGINEERING <br> END TERM EXAMINATION - JUN 2023 

Semester : Semester II - B.Tech ECE - 2022
Course Code : ECE2007
Course Name : Sem II - ECE2007 - Digital Design
Program : B.Tech. Electronics and Communication Engineering

Date : 21-JUN-2023
Time : 1.00PM - 4.00PM
Max Marks : 100
Weightage : 50\%

## Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

## PART A

## ANSWER ALL THE QUESTIONS

1. The Base-2, Base-10, and Base-16 number systems are also known as binary, decimal, and hexadecimal number systems. Convert the Base-10 number 42145 to its equivalent Base-2 number and Base-16 number.
(CO1) [Knowledge]
2. Digital circuits are classified as combinational and sequential circuits. Using a simple schematic block diagram, show the difference between a combinational logic circuit and a sequential logic circuit.
(CO3,CO4) [Knowledge]
3. In the canonical form, all possible literals are present in each term of the Boolean expression. Convert the following Boolean expression $Y=P+Q R^{\prime}+P Q+P^{\prime} Q R$ into canonical form.
(CO2,CO1) [Knowledge]
4. In a Priority Encoder, D0, D1 \& D2 are high means what is the encoded value of an 8 into 3 line Encoder?
(CO5) [Knowledge]
5. Given the Boolean expression $f=P Q^{\prime}+P Q '+P Q$. How many minimum number of NAND gates are required to implement the given Boolean expression?
(CO1,CO3) [Knowledge]

## PART B

## ANSWER ALL THE QUESTIONS

( $2 \times 15=30 \mathrm{M}$ )
6. The advantage of using complements in digital design is to perform subtraction by making use of addition. Design a combinational logic circuit that considers the three values namely minuend, subtrahend, and borrow-in to generate the difference and borrow outputs.
(CO3) [Comprehension]
7. Leela wants to create a situation to dictate when the latch can and cannot latch. For this, she extends an SR latch with an Enable line which must be driven high before data can be latched. Even though a control line is now required, the SR latch is not synchronous, because the inputs can change the output if the enable line is held high at length. When the Enable input is low, then the outputs remain latched to the previous data. Only when the enable input is high can the state of the latch change. Draw a truth table to discuss this scenario. Identify the latch in the discussion. Implement this using NAND gates only. Discuss the significant differences between a latch and a flip-flop.
(CO5) [Comprehension]

## PART C

## ANSWER ALL THE QUESTIONS

8. Answer the following questions related to the function $f(A, B, C, D)$ as defined by its minterms $f(A, B, C, D)=$ $\Sigma \mathrm{m}(0,1,3,4,5,6,7,13,15)$
a) Enter the minterms and maxterms on a suitable K-map and deduce the minimal canonical form for f(A,B,C,D).
b) Implement the above function using only basic gates
c) Implement the above function using only NAND gates
(CO2) [Application]
9. Consider a case where the designer has only JK flipflop available with him and he is assigned a task to design a D flipflop using JK flipflop. Explain the conversion from JK to D flipflop using Excitation tables.
(CO5) [Application]
10. A comparator used to compare two binary numbers each of two bits is called a 2-bit Magnitude comparator. It consists of four inputs and three outputs to generate less than, equal to, and greater than between two binary numbers. Generate the truth table for $A$ is equal to $B$ and draw the logic circuit diagram for 2-bit magnitude comparator using NAND gates.
(CO3,CO5) [Application]
