

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING END TERM EXAMINATION - JUN 2023

Semester : Semester IV - 2021 Course Code : ECE3009 Course Name : Sem IV - ECE3009 - Transmission Lines and Waveguides **Program** : ECE

Date: 12-JUN-2023 Time: 9.30AM - 12.30PM Max Marks : 100 Weightage: 50%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the guestion paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

1. What is the value of Z_0 for a lossless transmission line where $L = 4 \ mH/m$ and $C = 10 \ \mu F/m$? (CO5) [Knowledge] **2.** If z is a complex number such that z = 3 + j4, what is |z|? (CO5) [Knowledge] 3. When does γ become purely imaginary for a transmission line? (CO4) [Knowledge] 4. How many conductors does a transmission line have? (CO3) [Knowledge] 5. What kind of a filter is a waveguide? (CO4) [Knowledge] 6. What is the SI unit of G of a transmission line? (CO1) [Knowledge] 7. What is the reflection coefficient when $Z_0 = Z_L$? (CO2) [Knowledge] 8. What is the relationship between two adjacent voltage minima (V_{min}) and wavelength λ for a transmission line? (CO3) [Knowledge] 9. What are the SI units of G and L in a transmission line? (CO1) [Knowledge]

(15 X 2 = 30M)

10. Which of these modes have the lowest cut-off frequency - TE_{10} , TE_{21} , TE_{31} ?

(CO5) [Knowledge]

11. The phase velocity of a signal whose frequency is 100 MHz on a transmission line is $v_p = 2 * 10^4 \text{ km/s}$. Find its wave-length.

(CO3) [Knowledge]

- **12.** Which of the parameters *R*, *L*, *G* and *C* should be zero for an ideal conductor of a transmission line? (CO4) [Knowledge]
- **13.** Which of these constants (R, L, G and C) do not apppear in β of a distortion-less transmission line? (CO2) [Knowledge]
- 14. How many walls does a rectangular waveguide have?
- 15. What is normally contained in the hollow region of a waveguide?

(CO2) [Knowledge]

(CO1) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS (2 X 15 = 30M)

- **16.** Suppose you are asked to design a transmission line where all frequency components of a signal will travel at the same velocity (i.e. the line should be distortion-less). One approach will be to ensure a loss-less line where R = G = 0. However, since this is not practically feasible, suggest an alternative method. With all the necessary steps,
 - a. Arrive at the expressions of α and β for such a transmission line from the expression of γ .
 - b. Write down the expression for phase velocity v_p for this line.
 - c. Suppose the primary constants of this line are $R = 0.01 \Omega/km$, L = 225 mH/km, $G = 0.008 \mu O/km$, and C = 900 nF/km and the length of the line is 100 km. Use this data to determine the input impedances Z_{SC}

and Z_{OC} when the load end of the line is - (i) short circuited and (ii) open circuited at $f = \frac{10^4}{2\pi}$ Hz

You may find the binomial expansion $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$ useful for your solution.

(CO1) [Comprehension]

17. The constant VSWR circle on the Smith chart is very useful in finding the impedance at any point on a transmission line. For example, if the load impedance is known, the position of V_{max} or V_{min} can be found very easily without any laborious calculations. Consider such a transmission line where $Z_L = 100 + j150 \Omega$ and $Z_0 = 75 \Omega$. If the length of this transmission line is 1.2λ , determine the following using a Smith chart

using a Smith chart

- a. normalised load impedance z_L
- b. standing wave ratio
- c. reflection coefficient (both magnitude and phase-angle)
- d. distance of the load from the first voltage minimum
- e. distance of the load from the first voltage maximum

(CO2) [Comprehension]

ANSWER ALL THE QUESTIONS

(2 X 20 = 40M)

18. Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line and can measure standing waves, wavelength, and a number of other parameters including reflection coefficient and electrical impedance using a Smith chart. Consider a slotted air line having an unknown load impedance with VSWR = 2 whose minima are found at 11 cm, 19 cm, ..., on the scale. When the load is replaced by a short circuit, the minima are at 16 cm, 24 cm, ..., ..., ... If Z₀ = 50 Ω, calculate λ, f, z_L and Z_L using a Smith chart. Assume v_p = c for this case.

(CO2) [Application]

19. In general, a waveguide should only propagate a single mode rather than the higher order modes as power conversion to the latter reduces transmission efficiency. However, beyond its cut-off frequency, a higher order mode might be transmitted through a waveguide. Consider a rectangular waveguide with dimensions a = 2.5 cm and b = 1.0 cm is to operate below 15.1 GHz.

(a) How many *TE* and *TM* modes can the waveguide transmit if the guide is filled with a medium characterized by $\varepsilon_r = 2$ and $\mu_r = 2$?

(b) Calculate the cutoff frequencies of the modes.

(CO3) [Application]