Roll No

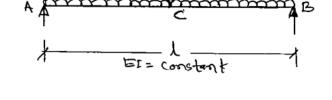
PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING **END TERM EXAMINATION - JUN 2023**

Semester : Semester IV - 2021 Course Code : CIV2013 Course Name : Sem IV - CIV2013 - Analysis of Determinate Structures Program : CIV

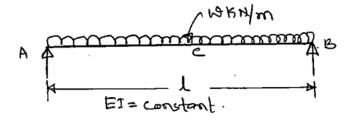
Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.


(iv) Do not write any information on the guestion paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

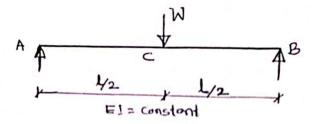

19 KH/m

1. Determine the maximum slope and deflection for the simply supported beam loaded as shown in the fig by moment area method. Take EI = Constant

(CO4) [Knowledge]

2. Calculate the maximum slope and deflection for the simply supported beam loaded as shown in the fig conjugate beam method Take EI = Constant

Time: 9.30AM - 12.30PM Max Marks : 100 Weightage : 50%

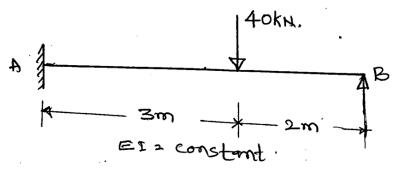

Date: 19-JUN-2023

(4 X 5 = 20M)

3. A symmetrical three hinged parabolic arch of span 40 m and central rise 8 m is carrying a UDL of magnitude 25 kN/m on left half of the arch. Calculate the reaction at the supporting points.

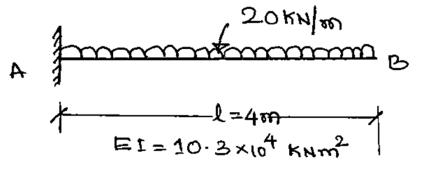
(CO2) [Knowledge]

4. Determine the maximum slope and deflection for the simply supported beam subjected to concentrated load at the center of the beam as shown in the fig by moment area method. Take EI = Constant

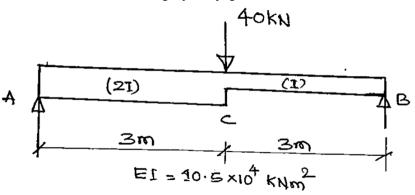

(CO4) [Knowledge]

PART B

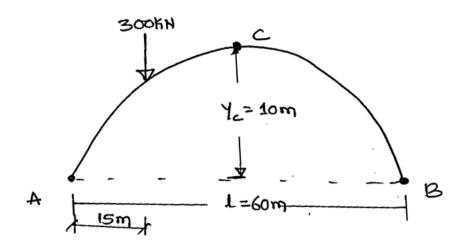
ANSWER ALL THE QUESTIONS


$(5 \times 10 = 50 \text{M})$

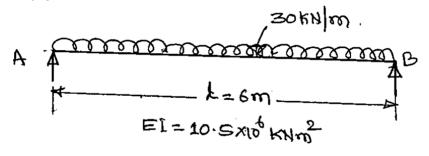
5. Using Consistent Deformation method, analyze the propped cantilever beam loaded as shown in fig and draw the BMD & SFD. Take EI = Constant.


(CO3) [Comprehension]

 Calculate the slope and deflection at free end for the cantilever beam loaded as shown in the fig by moment area method. Take EI = 10.3 x 10⁴ kN-m²


(CO4) [Comprehension]

7. Determine the maximum slope and deflection for the simply supported beam with varying section loaded as shown in the fig by conjugate beam method Take EI = $10.5 \times 10^{4} \text{ kN-m}^2$


(CO4) [Comprehension]

8. A symmetrical three hinged parabolic arch of span 60 m and central rise 10 m is carrying a point load of magnitude 300 kN at distance 15m from the left support as shown in fig. Calculate the reaction at the supporting points and draw BMD.

(CO2) [Comprehension]

 Determine the maximum slope and deflection for the simply supported beam loaded as shown in the fig conjugate beam method Take EI = 10.5 x 10⁶ kN-m²

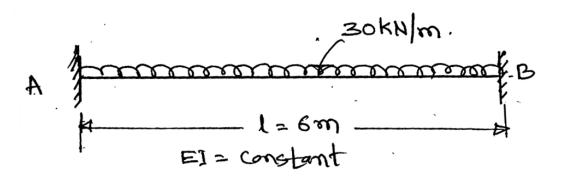
(CO4) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

(2 X 15 = 30M)

10. A cable is supported on piers 100m apart at the same level and has a central dip of 10m. Calculate the maximum tensile force induced in the cable, when it is subjected to UDL of magnitude 25 kN/m throughout its length. Also, determine the vertical force on the pier and maximum bending moment at the base of pier for the following cases:


Case: a) The cable passes over a pulley

Case: b) The cable passes over a saddle

Take back stay inclined at 60° to the vertical and height of the pier is 20m.

(CO2) [Application]

11. Analyze the Fixed beam loaded as shown in fig and draw the BMD & SFD, use consistent deformation method. Take EI = Constant.

(CO3) [Application]