| Roll No |  |  |  |
|---------|--|--|--|
|         |  |  |  |

(CO1) [Knowledge]



# PRESIDENCY UNIVERSITY BENGALURU

# SCHOOL OF INFORMATION SCIENCE END TERM EXAMINATION - JUN 2023

Semester: Semester II - 2022 Date: 14-JUN-2023

**Course Code**: MAT1010 **Time**: 1.00PM - 4.00PM

Course Name: Sem II - MAT1010 - Fundamenta Calculus

Max Marks: 100

Program: BSD Weightage: 50%

## Instructions:

(i) Read all questions carefully and answer accordingly.

- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

### PART A

| PART A |                                                              |                                         |  |  |  |  |
|--------|--------------------------------------------------------------|-----------------------------------------|--|--|--|--|
|        | ANSWER ALL THE QUESTIONS                                     | (10 X 2 = 20M)                          |  |  |  |  |
| 1.     | Define homogeneous function.                                 | (CO5) [Knowledge]                       |  |  |  |  |
| 2.     | State Taylor's theorem for two variable function.            | , , , , , , , , , , , , , , , , , , , , |  |  |  |  |
| 3.     | Define Taylor's series for a function                        | (CO5) [Knowledge]                       |  |  |  |  |
| 4.     | State Lagrange's Mean Value theorem                          | (CO1) [Knowledge]                       |  |  |  |  |
| 5.     | Write the conditions for the function is maxima.             | (CO1) [Knowledge]                       |  |  |  |  |
| 6.     | If $rt-s^2>0$ and $r<0$ , then the function $f(x_0,y_0)$ is? | (CO1) [Knowledge]                       |  |  |  |  |
| 7.     | Write Cauchy's mean value theorem.                           | (CO1) [Knowledge]                       |  |  |  |  |
| 8.     |                                                              | (CO1) [Knowledge]                       |  |  |  |  |
|        | Simplify, $I=\int_{-\pi\over 2}^{\pi\over 2}cos^8xdx$        | (CO4) [Knowledge]                       |  |  |  |  |
| 9.     | Write the relation between Beta and Gamma function.          | (CO4) [Knowledge]                       |  |  |  |  |
| 10.    | Find $\lim_{x\to 0} \frac{\sqrt{1+x}}{2} + 1$ .              | (OO+) [itilowieage]                     |  |  |  |  |

**PART B** 

(5 X 10 = 50M)

11. If u = f(2x - 3y, 3y - 4z, 4z - 2x),  $provethat \frac{1}{2}u_x + \frac{1}{3}u_y + \frac{1}{4}u_z = 0$ 

(CO1) [Comprehension]

12. Find the value  $\lim_{x \to 0} \left( \frac{\sin x}{x} \right)^{1/x}$ .

(CO1) [Comprehension]

13. If  $z=tan^{-1}\left(\frac{x^3+y^3}{x+y}\right)$ , then prove that  $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=sin2z$ .

(CO5) [Comprehension]

**14.** Verify the given function  $f(x) = e^x$  in [0,1], using Lagrange's mean value theorem.

(CO1) [Comprehension]

15. Evaluate  $\int_0^\infty \frac{x^4}{(1+x^2)^4} dx$ .

(CO4) [Comprehension]

**PART C** 

### **ANSWER ALL THE QUESTIONS**

(2 X 15 = 30M)

**16.** Find maximum and minimum values of the function  $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ .

(CO1) [Application]

17. Obtain the reduction formula for  $\int \sin^n x \ dx$  and  $\int_0^{\pi/2} \sin^n x \ dx$ .

(CO4) [Application]