Roll No

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF MANAGEMENT MID TERM EXAMINATION - OCT 2023

Semester: Semester V - 2023 Date: 30-OCT-2023

Course Name : Sem V - MAT2029 - Optimization Technique Max Marks : 50

Program: BBA Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS (5 X 1 = 5M) 1. Operations Techniques (OT), which is a very powerful tool for ______ (CO1) [Knowledge] 2. List the two advantages of Optimization Techniques? (CO1) [Knowledge] 3. For solving an assignment problem, which method is used? (CO2) [Knowledge] 4. What are all methods in the transporation problem to find intial basic solution? (CO2) [Knowledge] 5. What is term "Unbalanced" in the Tranportation Problem? (CO2) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

 $(3 \times 10 = 30M)$

6. List the phases of Operations Research and explain them.

(CO1) [Comprehension]

7. Using Hungarian Method, find the optimal solution for the given assignment problem.

	Α	В	С	D	E
Р	160	130	175	190	200
Q	135	120	130	160	175
R	140	110	155	170	185
S	50	50	80	80	110
Т	55	35	70	80	105

(CO2) [Comprehension]

8. Find the initial basic feasible solution for the TP by any two methods of your choice.

	D1	D2	D3	D4	Supply
01	19	30	50	10	7
02	70	30	40	60	9
O3	40	8	70	20	18
Demand	5	8	7	14	

(CO2) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

 $(1 \times 15 = 15M)$

9. Briefly explain the formulation of Linear Programming Problem using Graphical Method.

Maximize Z = 5 x + 4 y

Subject to the constraints

 $6 x + 4 y \le 24$;

 $x + 2 y \le 6$;

- x + y ≤ 1;

y ≤ 2;

where $x \ge 0$, $y \ge 0$.

(CO1) [Application]