PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION - OCT 2023

Semester: Semester III-2022
Course Code : MEC2010
Course Name : Sem III - MEC2010 - Fluid Mechanics
Program : B. TECH

Date : 30-OCT-2023
Time : 2:00PM - 3:30PM
Max Marks : 50
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE FIVE QUESTIONS

$5 \times 2=10 \mathrm{M}$

1. Define Fluid Mechanics and classify the same.
(CO1,CO2) [Knowledge]
2. Which of the following is called as Potential energy?
1) Pressure energy
2) Kinetic energy
3) Datum energy
4) Total energy
(CO1,CO2) [Knowledge]
3.

Which devices are used for measuring pressure and velocity.

$$
(\mathrm{CO1,CO} 2)[\text { Knowledge] }
$$

4. Write the statement for Bernoullis equation.

$$
(\mathrm{CO} 1, \mathrm{CO} 2)[\text { Knowledge] }
$$

5. What does the continuity equation state?
(CO1,CO2) [Knowledge]

PART B

ANSWER ALL THE TWO QUESTIONS

$2 \times 10=20 \mathrm{M}$
6. Define the term Compressibility and Bulk Modulus. Also deduce the equation for both with an example.
(CO2,CO1) [Comprehension]
7. Deduce the relationship between Absolute, Gauge, Atmospheric and Vacuum pressures with a neat sketch.
(CO2,CO1) [Comprehension]

PART C

ANSWER THE FOLLOWING QUESTION
 $1 \times 20=20 M$

8.a) The diameter of a small piston and large piston of a hydraulic jack are 3 cm and 6 cm respectively. A force of 40 N is applied on the small piston. Find the load lifted by large piston, When the pistons are at same level and when the small piston is 20 cm above the large piston. The specific gravity of the liquid in the jack is 1.5 .
8.b) A differential manometers is connected at two points P and Q. The pipe P contains liquid of specific gravity 12 , while pipe Q contains liquid of specific gravity 0.8 . The pressure at point P and Q are $1.3 \mathrm{kgf} / \mathrm{cm} 2$ and $2.4 \mathrm{kgf} / \mathrm{cm} 2$ respectively. Find the diference in mercury level in the differential manometer with a neat sketch. Assume the center of pipe P and Pipe Q are (4+h) m and 6 m respectvely from the reference.

