PRESIDENCY UNIVERSITY

BENGALURU
SET A

SCHOOL OF ENGINEERING
 END TERM EXAMINATION - JAN 2024

Semester: Semester III-2022
Course Code : CSE2007
Course Name :Design and Analysis of Algorithms
Program : B.Tech.

Date : 05-JAN-2024
Time : 9:30AM - 12:30 PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

$4 \times 5 \mathrm{M}=\mathbf{2 0 M}$

1. List the different basic mathematical effeciency classes and explain each in one sentence.
(CO1) [Knowledge]
2. List the steps in the form of algorithm in order to sort the elements using decrease and conquer technique
(CO3) [Knowledge]
3. Write down the sorting algorithm which sorts the given unsorted array from beginning of the array using brute force technique
(CO2) [Knowledge]
4. Explain the general method of backtracking in detail.
(CO5) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

$5 \times 10 \mathrm{M}=50 \mathrm{M}$
5. Demonstrate how binary search is efficient when compared to sequential search
(CO2) [Comprehension]
6. Apply quick sort to the elements $\mathrm{C}, \mathrm{H}, \mathrm{A}, \mathrm{K}, \mathrm{R}, \mathrm{A}, \mathrm{V}, \mathrm{A}, \mathrm{R}, \mathrm{T}, \mathrm{H}, \mathrm{Y}$
(CO3) [Comprehension]
7. Write any one cycle removing algorithm
(CO4) [Comprehension]
8. Apply backtracking technique to 4 * 4 chessboard for N -Queen's problem .
(CO5) [Comprehension]
9. Explain the general method of dynamic programming and greedy technique. Also mention atleast 3 differences between the same.
(CO4) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

$2 \times 15 M=30 M$
10. Obtain the optimal solution for the binary knapsack problem using dynamic technique. Assume Maximum Knapsack capacity is 5 Kg .

Item	Weight	Profit
1	2	15
2	3	20
3	4	30
4	2	25

(CO4) [Application]
11. Construct Huffman tree for the following data and obtain its Huffman code.

Characters	A	B	C	D	E	-

Encode the Text CAB_DAC.
Decode the text whose encoding is 011101000000110111
(CO4) [Application]

