Roll No

PRESIDENCY UNIVERSITY **BENGALURU**

SET A

Date: 05-JAN-2024

Max Marks: 100

Weightage: 50%

Time: 9:30AM - 12:30 PM

SCHOOL OF ENGINEERING **END TERM EXAMINATION - JAN 2024**

Semester : Semester III - 2022 Course Code : CSE2007 Course Name : Design and Analysis of Algorithms Program : B.Tech.

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the guestion paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

1. List the different basic mathematical effeciency classes and explain each in one sentence.

(CO1) [Knowledge]

- 2. List the steps in the form of algorithm in order to sort the elements using decrease and conquer technique
 - (CO3) [Knowledge]
- 3. Write down the sorting algorithm which sorts the given unsorted array from beginning of the array using brute force technique
- 4. Explain the general method of backtracking in detail.

PART B

ANSWER ALL THE QUESTIONS

5. Demonstrate how binary search is efficient when compared to sequential search

6. Apply quick sort to the elements C,H,A,K,R,A,V,A,R,T,H,Y

7. Write any one cycle removing algorithm

(CO2) [Knowledge]

(CO5) [Knowledge]

5 X 10M = 50M

(CO3) [Comprehension]

(CO2) [Comprehension]

(CO4) [Comprehension]

1/2

 $4 \times 5M = 20M$

8. Apply backtracking technique to 4 * 4 chessboard for N-Queen's problem .

(CO5) [Comprehension]

9. Explain the general method of dynamic programming and greedy technique. Also mention atleast 3 differences between the same.

(CO4) [Comprehension]

 $2 \times 15M = 30M$

PART C

ANSWER ALL THE QUESTIONS

10. Obtain the optimal solution for the binary knapsack problem using dynamic technique. Assume Maximum Knapsack capacity is 5Kg.

Item	Weight	Profit
1	2	15
2	3	20
3	4	30
4	2	25

(CO4) [Application]

11. Construct Huffman tree for the following data and obtain its Huffman code.

 Characters
 A
 B
 C
 D
 E
 _

 Probability
 0.4
 0.3
 0.25
 0.2
 0.45
 0.15

Encode the Text CAB_DAC. Decode the text whose encoding is 011101000000110111

(CO4) [Application]