PRESIDENCY UNIVERSITY

BENGALURU
SET A

SCHOOL OF ENGINEERING
 END TERM EXAMINATION - JAN 2024

Semester : Semester III-2022
Course Code : MEC2010
Course Name : Fluid Mechanics
Program : B.Tech.

Date : 04-JAN-2024
Time : 9:30AM - 12:30 PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS
 $4 \times 5 M=20 M$

1. Write the conditions of equilibrium of a floating body.
(CO1) [Knowledge]
2. Write the relationship between Velocity potential function and stream function.
(CO2) [Knowledge]
3. Define the term Buoyancy, and Metacentric height.
(CO3) [Knowledge]
4. State the working prinicple of Venturimeter and Orificemeter.
(CO4) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

$5 \times 10 \mathrm{M}=50 \mathrm{M}$
5. Derive the equation to measure the pressure at point B for the following case.

(CO1) [Comprehension]
6. Interpret the relation between Absolute, Gauge, Atmospheric and Vacuum pressures with a neat sketch.
(CO2) [Comprehension]
7. A water-flowing pipe has a diameter of 20 cm at cross section 1 and 15 cm at cross section 2 , respectively. Section 1 's water velocity is specified as $5 \mathrm{~m} / \mathrm{s}$. (1) At sections 1 and 2 , locate the velocity head. (2) Determine the discharge rate at each section.
(CO3) [Comprehension]
8. Deduce the relationship between Compressibility and Bulk modulus.
(CO4) [Comprehension]
9. (a) A venturimeter with a 30 cm inlet diameter and a 10 cm throat diameter is passing oil with a specific gravity of 0.8 through it. The reading on the oil-mercury differential manometer is 25 cm . Determine how much oil will be released by the horizontal venturimeter. Let Cd equal 0.98.
(b) Determine the oil flow rate through a pipe when there is a 50 mm mercury level disparity in a U-tube differential manometer attached to the two pitot tube tappings. Assume 0.7 sp . gr. of oil and a 0.98 coefficient of Pittot tube.
(CO4) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

$$
2 \times 15 M=30 M
$$

10. (a) A hydraulic lift consist of 60 cm diameter ram and slides in a cylinder of diameter 60.02 cm , while the annular space is filled up with oil having kinematic viscosity of 0.05 cm 2 s , and specific gravity of 0.85 . If the rate of travel of ram $10 \mathrm{~m} / \mathrm{min}$. Find the frictional resistance when 3.85 m of ram is engaged in cylinder.
(b) Assume a cubical block of 20 cm side and of 20 kg weight is allowed to slide down along a plane inclined at 30 degree to the horizontal on which there is a film of oil having viscosity of 2.16*10^-3. What will be the terminal velocity of the block if the film thickness is 0.04 mm ?
(CO2) [Application]
11. (a) An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure difference measured by a mercury oil differential manometer on the two sides of the orifice meter gives a reading of 50 cm of mercury. Find the rate of flow of oil of $\mathrm{sp} . \mathrm{gr} .0 .9$ when the coefficient of discharge of the orifice meter is 0.64
(b) Determine the oil flow rate through a pipe when there is a 50 mm mercury level disparity in a Utube differential manometer attached to the two pitot tube tappings. Assume 0.7 sp . gr. of oil and a 0.98 coefficient of Pittot tube.
(CO4) [Application]
