SCHOOL OF ENGINEERING
 END TERM EXAMINATION - JAN 2024

Semester: Semester III-2022
Date : 08-JAN-2024
Course Code : ECE3004
Course Name : Electromagnetic Theory
Time : 9:30AM - 12:30 PM

Program : B.Tech.

Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

$4 \mathrm{X} \mathbf{5 M}=\mathbf{2 0 M}$

1. Write down the mathematical relationships between the tangential and normal components of E - fields at the interface between a dielectric and a perfect conductor whose $\sigma \rightarrow \infty$.
(CO3) [Knowledge]
2. Write down the differential form of the Gauss's law for both electrostatics and magnetostatics.
(CO4,CO3) [Knowledge]
3. For a region in free-space having a magnetic field given by $\vec{H}=z x \hat{i}+x y \hat{j}+y z \hat{k}($ in $\mathrm{A} / \mathrm{m})$, determine the magnetic flux-density and current-density at a point $P(1,1,1)$ using Ampere's circuital law in differential form.
(CO3,CO4) [Knowledge]
4. Find the vector triple product of three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=4 \hat{i}+3 \hat{j}+2 \hat{k}$ i.e. evaluate $\vec{a} \times(\vec{b} \times \vec{c})$.
(CO1) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

$$
5 \times 10 M=50 M
$$

5. Consider a charge $Q=25 * 10-6 \mathrm{C}$ in free-space. Find the electric field intensity at a distance 2 m away from the charge using the Coulomb's law.
(CO3) [Comprehension]
6. Suppose the magnetic flux density is given by $\vec{B}=-20 x \hat{i}+\beta y \hat{j}+20 \hat{k}$ (in T) where β is an unknown constant. Using Gauss's law of magnetostatics, evaluate β.
(CO4,CO3) [Comprehension]
7. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then find the scalar triple product $\left[\begin{array}{ll}2 \vec{a}-\vec{b} & 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}] \text {. }\end{array}\right.$
(CO1) [Comprehension]
8. Suppose the $x y$-plane is the common boundary between two dielectric slabs (Regions (1) and (2)) of relative permittivities 1.1 and 6 respectively. If the electric field in Region (1) is $\vec{E}_{1}=0.5 \hat{a}_{x}-1.2 \hat{a}_{y}+1.5 \hat{a}_{z}(\mathrm{in} \mathrm{V} / \mathrm{m})$, find the E-field intensities in Regions (1) and (2) and the angles made by the E-fields with the normals to the interface.
(CO3) [Comprehension]
9. Using the Biot-Savart's law, find the magnetic field

- (a) at a distance r from a finite line of length $2 L$ carrying a uniform current I (in A) in free-space.
- (b) at the centre of a regular polygon of side N where each side is of length L, where each side carries a uniform current I (in A) in free-space.
(CO4,CO3) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

$2 \times 15 M=30 M$
10. A point charge Q is placed at a distance d from the center of a grounded (at potential 0) conducting sphere of radius a. Calculate the charge induced on the surface of the sphere.
(CO3) [Application]
11. The figure below shows a coaxial cable in which the space between the inner and outer conductors is filled with an electron cloud having a volume density of charge $\rho_{v}=\frac{A}{r}$ for $a<r<b$ where a and b are the radii of inner and outer conductors respectively. The inner conductor is held at a potential V_{0} whereas the outer conductor is grounded (at 0 potential). Determine the potential distribution and the electric field in the region between the two conductors solving the Poisson's equation. You may find the expressions for the Laplacian $\nabla_{\text {cyl }}^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$ and the gradient $\nabla_{\text {cyl }}=\hat{a}_{r} \frac{\partial}{\partial r}+\hat{a}_{\phi} \frac{1}{r} \frac{\partial}{\partial \phi}+\hat{a}_{z} \frac{\partial}{\partial z}$ in cylindrical form useful for your solution.

(CO3) [Application]

