Roll No

PRESIDENCY UNIVERSITY BENGALURU

SET A

SCHOOL OF ENGINEERING **END TERM EXAMINATION - JAN 2024**

Semester : Semester III - 2022 Course Code : ECE3004 Course Name : Electromagnetic Theory Program : B.Tech.

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.

(iii) Scientific and non-programmable calculator are permitted.

(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

1. Write down the mathematical relationships between the tangential and normal components of E- fields at the interface between a dielectric and a perfect conductor whose $\sigma \rightarrow \infty$.

(CO3) [Knowledge]

2. Write down the differential form of the Gauss's law for both electrostatics and magnetostatics.

(CO4,CO3) [Knowledge]

(CO3,CO4) [Knowledge]

3. For a region in free-space having a magnetic field given by $\vec{H} = z\hat{x}\hat{i} + xy\hat{j} + yz\hat{k}$ (in A/m), determine the magnetic flux-density and current-density at a point P(1,1,1) using Ampere's circuital law in differential form.

4. Find the vector triple product of three vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = 4\hat{i} + 3\hat{j} + 2\hat{k}$ *i.e.* evaluate $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$

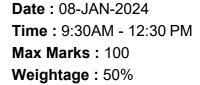
(CO1) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

5. Consider a charge Q = 25 * 10 - 6 C in free-space. Find the electric field intensity at a distance 2 m away from the charge using the Coulomb's law.

(CO3) [Comprehension]



 $4 \times 5M = 20M$

 $5 \times 10M = 50M$

6. Suppose the magnetic flux density is given by $\vec{B} = -20\hat{x}\hat{i} + \beta y\hat{j} + 20\hat{k}$ (in T) where β is an unknown constant. Using Gauss's law of magnetostatics, evaluate β .

(CO4,CO3) [Comprehension]

- 7. If \vec{a} , \vec{b} and \vec{c} are unit coplanar vectors, then find the scalar triple product $\begin{bmatrix} 2\vec{a} \vec{b} & 2\vec{b} \vec{c} & 2\vec{c} \vec{a} \end{bmatrix}$
 - (CO1) [Comprehension]
- 8. Suppose the xy-plane is the common boundary between two dielectric slabs (Regions ① and ②) of relative permittivities 1.1 and 6 respectively. If the electric field in Region ① is $\vec{E}_1 = 0.5\hat{a}_x 1.2\hat{a}_y + 1.5\hat{a}_z$ (in V/m), find the E-field intensities in Regions ① and ② and the angles made by the *E*-fields with the normals to the interface.

(CO3) [Comprehension]

- 9. Using the Biot-Savart's law, find the magnetic field
 - (a) at a distance r from a finite line of length 2L carrying a uniform current I (in A) in free-space.
 - (b) at the centre of a regular polygon of side *N* where each side is of length *L*, where each side carries a uniform current *I* (in A) in free-space.

(CO4,CO3) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

2 X 15M = 30M

10. A point charge Q is placed at a distance d from the center of a grounded (at potential 0) conducting sphere of radius a. Calculate the charge induced on the surface of the sphere.

(CO3) [Application]

11. The figure below shows a coaxial cable in which the space between the inner and outer conductors is filled with an electron cloud having a volume density of charge $\rho_v = \frac{A}{r}$ for a < r < b where a and b are the radii of inner and outer conductors respectively. The inner conductor is held at a potential V_0 whereas the outer conductor is grounded (at 0 potential). Determine the potential distribution and the electric field in the region between the two conductors solving the Poisson's equation. You may find the expressions for the Laplacian $\nabla_{cyl}^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$ and the gradient $\nabla_{cyl} = \hat{a}_r \frac{\partial}{\partial r} + \hat{a}_\phi \frac{1}{r} \frac{\partial}{\partial \phi} + \hat{a}_z \frac{\partial}{\partial z}$ in cylindrical form useful for your solution.

(CO3) [Application]

