PRESIDENCY UNIVERSITY BENGALURU

SET B

SCHOOL OF ENGINEERING
 END TERM EXAMINATION - JAN 2024

Semester : Semester III - 2022
Date : 08-JAN-2024
Course Code : EEE2009
Course Name :Analog Electronics Circuits
Time : 9:30AM - 12:30 PM
Max Marks : 100
Program : B.Tech.

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

$5 \times 2 M=10 M$

1. In a common base connection, $\alpha=0.95$. The voltage drop across $\mathbf{2 k \Omega}$ resistance which is connected in the collector is 2 V . Find the base current.
(CO1) [Knowledge]
2. In a common base connection, $I E=1 \mathrm{~mA}, I C=0.95 \mathrm{~mA}$. Calculate the value of $I B$.
(CO1) [Knowledge]
3. Explain with a circuit of Series Negative Clipper.
(CO2) [Knowledge]
4. What is clamper and its application?
(CO2) [Knowledge]
5. Find the value of β if (i) $\alpha=0.9$ (ii) $\alpha=0$.
(CO3) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

$$
5 \times 10 \mathrm{M}=50 \mathrm{M}
$$

6. Calculate the $\mathrm{Vdc}, \mathrm{Vr}(\mathrm{rms})$ through a 1 KOhm load connected to a half-wave rectifier circuit shown in fig
7. To achieve maximum voltage gain, which is the most suitable transistor configuration for cascading? and brief the same.
(CO3,CO1) [Comprehension]
8. Design a Colpitts oscilator using the data given below:

A 1 mH inductor is available. Choose the capacitor values in a Colpitts oscillator so that $\mathrm{f}=1 \mathrm{MHz}$ and $\mathrm{mv}=0.25$.
(CO3,CO1) [Comprehension]
9. Prakash conducted experiment in a laboratory and Produce a oscillation using Colpitts Oscillator.Discuss the operation of Colpitts Oscillator.
(CO4,CO3,CO1) [Comprehension]
10. A 1 pF capacitor is available. Choose the inductor values in a Hartley oscillator so that $\mathrm{f}=1 \mathrm{MHz}$ and $\mathrm{mv}=0.2$.
(CO5,CO3,CO1) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

$2 \times 20 M=40 M$
11. A JFET in Fig. 4 has values of VGS (off) $=-8 \mathrm{~V}$ and IDSS $=16 \mathrm{~mA}$. Determine the values of VGS, ID and VDS for the circuit
(CO2,CO3) [Application]
12. In an n-channel JFET biased by potential divider method, it is desired to set the operating point at ID $=2.5 \mathrm{~mA}$ and $\mathrm{VDS}=8 \mathrm{~V}$. If $\mathrm{VDD}=30 \mathrm{~V}, \mathrm{R} 1=1 \mathrm{M} \Omega$ and $\mathrm{R} 2=500 \mathrm{k} \Omega$, find the value of RS . The parameters of JFET are IDSS $=10 \mathrm{~mA}$ and VGS (off) $=-5 \mathrm{~V}$
(CO3,CO4) [Application]

