SCHOOL OF ENGINEERING
 END TERM EXAMINATION - JAN 2024

Semester: Semester V - 2021
Date : 04-JAN-2024
Course Code : EEE2019
Course Name : Power Electronics
Time : 9:30AM - 12:30 PM
Max Marks : 100
Program : B.Tech.
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

$5 \times 2 M=10 M$

1. While designing a Chopper for a battery operated vehicle, the features of high input impedance and low on state power loss are desirable. Suggest the suitable semiconductor device which is suitable in the power converter (C.O.NO 1) [Knowledge]
(CO1) [Knowledge]
2. In a wood cutting application, A DC shunt motor is controlled by a single phase controlled rectifier. The supply specifications are Single phase $230 \mathrm{~V}, 50 \mathrm{~Hz}$. The motor specifications are $\mathrm{Ra}=10 \mathrm{ohms}, \mathrm{La}=1 \mathrm{mH}$ and $\mathrm{Eb}=100 \mathrm{~V}$. Compute the minimum firing angle of the rectifier.
(C.O.NO 2) [Knowledge]
(CO2) [Knowledge]
3. WAP4 electric engine uses a DC series motor to haul the passenger trains in Indian Railways. Assume the DC series motor is controlled by a step up chopper, if the input voltage to a chopper is 375 V DC. Compute the minimum voltage of the chopper?
(CO3) [Knowledge]
4. A single phase induction motor is used as a blower for industrial applications. The specifications of the motor are $230 \mathrm{~V}, 50 \mathrm{~Hz}, \mathrm{R}=10 \mathrm{ohms}$ and $\mathrm{L}=10 \mathrm{mH}$. The motor is controlled by a single phase fullwave AC Voltage regulator. Assume the suitable control technique and compute the impedance angle?
(CO3) [Knowledge]
5. In an oil mill, a centrifugal pump is controlled by a single phase full bridge inverter to pump the liquid. The input voltage of a single phase full bridge inverter is 440 V DC. What would be the RMS value of output voltage?
(CO4) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

6. 7. A VS-VSK.230.PbF series SCR datasheet is provided to design a firing circuit to turn on the SCR. The specifications are as follows

Maximum average on state current at 850 C is 230 A
Low level of thresh hold voltage -1.03 V
High level of thresh hold voltage -1.08 V
Maximum on state voltage drop - 1.59 V
Maximum holding current -500 mA
Maximum latching current- 1000 mA .
Minimum gate pulse width-100 $\mu \mathrm{Sec}$
Gate pulse voltage-10V
For an application, If the SCR represented in data sheet is failed to trigger when the gate pulse magnitude of 10 V and gate pulse width of $80 \mu \mathrm{sec}$ are applied when connected to a load of $\mathrm{L}=2 \mathrm{H}$ and DC source voltage of 200V. Identify the problem to trigger the SCR and suggest the value of minimum gate pulse width required to trigger the SCR and compute pulse width if $\mathrm{R}=20$ ohms and $\mathrm{L}=0.2 \mathrm{H}$.
(CO1) [Comprehension]
7. A $220 \mathrm{~V}, 10 \mathrm{~A}, 1300 \mathrm{rpm}$ DC shunt motor used for wood cutting application delivers constant load current and its armature resistance is 1Ω, inductance is 2 mH and back e.m.f is 110 V . The motor is controlled by a single phase fully controlled rectifier fed from $1-\phi, 230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. While carving a wooden piece at rated torque, T 1 and T 2 are fired at $\alpha=10^{\circ}$. It is found that the thyristors couldn't be fired at that angle and successfully triggered for the values of firing angles greater than 20°.

1. Identify the problem in rectifier control circuit and determine the firing angle for obtaining rated torque.
2. Discuss the value of firing angle at rated torque when back emf is reversed.
(CO2) [Comprehension]
3. A 30A, 470 V and 875 rpm Crompton DC shunt motor is used in steel rolling mills for coiler operation. This motor is controlled by three phase fully controlled converter. The value of armature winding resistance is 1Ω and inductance is 1 mH . The supply specifications are $3-\phi, 440 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. It is required to rolling the sheet by rotating the spindle at a speed of 600 rpm . It is observed that the spindle is rotating in anti clock wise direction.
i) What would be the problem in firing circuit? 5M
ii) Compute the firing angle at rated torque and at a speed of -800rpm
(CO2) [Comprehension]
4. A fan manufacturing company has produced two types of fans i.e Type A and Type B. As per the Indian Standard Institute (ISI) norms, i.e IS: 374-1979. Type A fan regulator shall be capable of reducing the fan speed at least 30% of the rated speed and the Type C fan regulator (AC Voltage controller) shall be capable of reducing the fan speed at least 50% of the rated speed. Suggest the suitable AC Voltage controller for TypeA \& B fans and the minimum firing angle of the converter too. Compute the rms value of out put voltage at the firing angle of 30 degrees for both the converters.
(CO3) [Comprehension]
5. A battery operated vehicle is controlled by a chopper and is connected to separately excited DC motor. The battery pack is made up of Li-lon of voltage 300 V DC. The motor specifications are 220 V , $950 \mathrm{rpm}, 30 \mathrm{~A}$ and Armature resistance of 0.05 ohms. It is required to operate in first quadrant of speed and torque plane. Suggest the type of chopper and the maximum value of duty cycle for the DC-DC converter. Compute the duty cycle, if it is required to rotate at the speed of 800 rpm and rated torque.
(CO3) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

11. A single phase AC Voltage controller is fed with $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply and is connected to a $1 \mathrm{~kW}, 230 \mathrm{~V}$ heater. Assume the power controllers as unidirectional and bidirectional AC Voltage controllers. Calculate and compare the following parameters of both the controllers
12. Range of voltage control
13. RMS value of output voltages at the firing angle of 45°
14. Output power at the firing angle of 45°
15. Input power factor at the firing angle of 45°
(CO3) [Application]
16. A fan is connected to a single phase full bridge inverter which has square wave output. At the time of running, it is producing a lot of noise (Not of bearings). Single phase 230 V is fed to the motor.
17. Identify the reason for the noise
18. Compute the supply input voltage
19. Compute the magnitude of fundamental and Fifth order voltage harmonics
20. Express the magnitude of fifth order harmonic as \% of fundamental voltage
21. Compute distortion factor and \%THD
(CO4) [Application]
