PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING
 END TERM EXAMINATION - JAN 2024

Semester: Semester III-2022
Course Code : MAT2004
Course Name :Discrete Mathematical Structures
Program : B.Tech.

Date : 10-JAN-2024
Time : 9:30AM - 12:30 PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

$5 \mathrm{X} 4 \mathrm{M}=\mathbf{2 0 M}$

1. Obtain the Disjunctive normal form of $\neg(p \rightarrow(q \wedge r))$.
(CO1) [Knowledge]
2. If $f: R \rightarrow R$ is defined by $f(x)=a x+b$, for $a, b \in R$ and $a \neq 0$. Show that f is invertible and find the inverse of f.
(CO2) [Knowledge]
3. Write the relation of the given poset and draw the directed graph of $(\{1,2,3,4\},<)$.
(CO2) [Knowledge]
4. Find the minimal and maximal elements of the given figure and greatest lower bound and the least upper bound of $\{4,5\}$

(CO3) [Knowledge]
5. How many ways are there to place 10 indistinguishable balls into 8 distinguishable bins?
(CO4) [Knowledge]

PART B

6. Verify that $R \rightarrow S$ can be derived from the given premises $P \rightarrow(Q \rightarrow S), \neg R \vee P$ and Q.
(CO1) [Comprehension]
7. If $X=\{1,2,3, \ldots, 7\}$ and $R=\{(x, y) \mid x-y$ is divisible by 3$\}$. Show that R is an equivalence relation.
(CO2) [Comprehension]
8. Prove that Cancellation laws hold in Boolean Algebra.
i. e for any three elements $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in a Boolean algebra such that, $\mathrm{a} \wedge \mathrm{b}=\mathrm{a} \wedge \mathrm{c}, \mathrm{a} \vee \mathrm{b}=\mathrm{a} \vee \mathrm{c} \Rightarrow b=c$.
(CO3) [Comprehension]
9. Determine whether the given posets $(\{1,2,3,4,5\}, \mid)$ and $(\{1,2,4,8,16\}, \mid)$ are lattices. ('|' represents divisibility relation).
(CO3) [Comprehension]
10. (i) How many ways are there to distribute hands of 5 cards to each of 6 players from the standard deck of 52 cards?
(ii) How many ways are there to pack five copies of the same book into four identical boxes, where a box can contain as many as five books?
(CO4) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

2 X 15M = 30M
11. a) Obtain the Principal disjunctive normal form of $p \wedge \neg(q \wedge r) \vee(p \rightarrow q)$.
b) Prove that $\forall x(P(x) \rightarrow Q(x)), \forall x(R(x) \rightarrow \neg Q(x)) \Longrightarrow \forall x(R(x) \rightarrow \neg P(x))$.
(CO1) [Application]
12. Prove that $\left(D_{30}, \mid\right)$ is a distributive lattice where D_{30} is the set of all positive divisors of 30 .
(CO3) [Application]

