SCHOOL OF INFORMATION SCIENCE END TERM EXAMINATION - JAN 2024

Semester: Semester I-2023
Date: 10-JAN-2024
Course Code : MAT3001
Course Name :Mathematical Foundation of Computer Application
Time : 1:00 PM - 4:00 PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

5X4=20M

1. What are the truth values of the proposition $Q(1,2)$ and $Q(3,0)$ for the statement $Q(x, y): x=y+3$.
(CO1) [Knowledge]
2. Draw the Hasse diagram for a set of positive integral divisors of 6 . Under the relation divisibility.
(CO2) [Knowledge]
3. Define homomorphism of groups with an example.
(CO3) [Knowledge]
4. Define Isolated vertex and pendent vertex with example for each.
(CO4) [Knowledge]
5. Define directed graph with example
(CO4) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS
 $5 \times 10=50 \mathrm{M}$

6. Prove that $(p \rightarrow(q \vee r)) \leftrightarrow((p \wedge \sim q) \rightarrow r)$ is a tautology using truth table
(CO1) [Comprehension]
7. Show that $\left(D_{30}, /\right)$ is a Boolean algebra, where D_{30} is the set of all positive divisors of 30 .
(CO2) [Comprehension]
8. Show that distributive law $x(y+z)=x y+x z$ is valid using Boolean function.
(CO2) [Comprehension]
9. Find whether the the following set together with the binary operation is a semigroup, a monoid, or neither, if it is a monoid specify the identity, If it is a semigroup or a monoid determine whether it is a commutative.
(i) $\mathrm{A}=$ set of all positive integers $a \star b=\max (a, b)$ i.e bigger of a and b where $a \star b=L C M(a, b)$
(ii) Set, $S=\{1,2,3,6,9,18\}$
(CO3) [Comprehension]
10. Write the degrees and Neighborhoods of all the vertices of following graph.

(CO4) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

$15 \times 2=30 \mathrm{M}$
11. Group code defined by $e: B^{2} \rightarrow B^{5}$ such that $\mathrm{e}(00)=00000, \mathrm{e}(01)=01110, \mathrm{e}(10)=10101, \mathrm{e}(11)=11011$, decode the following words relative to maximum likelihood decoding function (a)11110, (b)10011, (c) 10100.
(CO3) [Application]
12. (a) Explain the Kruskal's algorithm.
(b) Apply Dijkstra's algorithm to the following graph to find the shortest path from u to v.

(CO4) [Application]

