

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 3

Il Semester 2016-2017

Course: MATH A 106 Differential Equations & Fourier Series

17 April 2017

Instructions:

- i. Write legibly
- Scientific and non programmable calculators are permitted

Part A

(2 Q x 4 M= 08 Marks)

1. Solve:
$$\frac{d^2y}{dx^2} - y = x \sin x$$
.

2. Obtain the general solution of
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 2\sin\{\log(1+x)\}$$
.

Part B

(2 Q x 6 M≈ 12 Marks)

3. Solve:
$$\frac{dx}{dt} + 2y = -\sin t$$
, $\frac{dy}{dt} - 2x = \cos t$

4. By the method of variation of parameters solve:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$$

Part C

(1 Q x 10 M= 10 Marks)

5. Obtain the power series solution of
$$\frac{d^2y}{dx^2} + xy = 0$$

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set B

TEST 2

H Semester 2016-2017

Course: MATH A 106 Differential Equations & Fourier Series

20 March 2017

Instructions:

i. Write legibly

ii. Scientific and non programmable calculators are permitted

Part A

(3 Q x 3 M= 09 Marks)

1. Solve: $\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0$.

2. Solve: $4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 100$ to get the general solution.

3. Solve: $(D^2 + 9)y = \sin 2x$.

Part B

(2 Q x 6 M= 12 Marks)

- 4. A resistor of R = 10 ohms, an inductor of L = 2 henries and a battery of E volts are connected in series with a switch S. At t = 0, the switch is closed and the current I = 0. Find the current I for t > 0, if (a) E = 40 and (b) $E = 20e^{-3t}$.
- 5. Solve $(D^2 2D + 1)y = x^2e^{3x}$.

Part C

(1 Q x 09 M= 09 Marks)

6. Solve:
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 25y = e^{2x} + \sin x + x$$
.

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set B

TEST 1

II Semester 2016-2017

Course: MATH A 106 Differential Equations & Fourier Series

20 February 2017

Instructions:

- i. Write legibly
- Scientific and non programmable calculators are permitted

Part A

(3 Q x 3 M= 09 Marks)

- 1. Solve the initial value problem $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2$ with y(0) = 1
- 2. Obtain the general solution of the differential equation $2xydx + x^2dy = 0$
- 3. Find the solution of $\frac{dy}{dx} + y \approx e^{-x}$

Part B

 $(2 \text{ Q} \times 6 \text{ M} = 12 \text{ Marks})$

- 4. Solve: $\frac{dy}{dx} + y \tan x = y^2 \sec x$.
- 5. Solve the differential equation $(x^2y^2 + xy + 1)ydx + (x^2y^2 xy + 1)xdy = 0$

Part C

(1 Q x 09 M# 09 Marks)

- 6. (a) State law of growth and decay.
 - (b) The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in 1 hour. What was the value of N after 1.5 and 3 hours?

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 2

H Semester 2016-2017

Course: MATH A 106 Differential Equations & Fourier Series

20 March 2017

Instructions:

- i. Write legibly
- ii. Scientific and non programmable calculators are permitted

Part A

(3 Q x 3 M = 09 Marks)

- 1. Solve: $\frac{d^3y}{dx^3} 7\frac{d^2y}{dx^2} + 14\frac{dy}{dx} 8y = 0$.
- 2. Obtain the general solution of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{2x}$.
- 3. Solve: $(D^2 4)y = \cos x$.

Part B

(2 Q x 6 M- 12 Marks)

- 4. Find the orthogonal trajectories of the family of curves $r'' = a'' \cos n\theta$,
- 5. Solve $(D^2 4D + 3)y = e^x \cos 2x$.

Part C

(1 Q x 09 M= 09 Marks)

6. Solve:
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 2\cos(2x+3) + 2e^x + x^2$$
.

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 1

11 Semester 2016-2017

Course: MATH A 106 Differential Equations & Fourier Series

20 February 2017

Instructions:

<u>,</u>

i. Write legibly

Scientific and non programmable calculators are permitted

Part A

(3 Q x 3 M= 09 Marks)

- 1. Solve the initial value problem $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ with y(0) = 1
- 2. Obtain the general solution of the differential equation $\{(x+1)e^x e^y\}dx = xe^y dy$
- 3. Find the solution of $\frac{dy}{dx} + \frac{y}{x} = x^2$

Part B

(2 Q x 6 M≈ 12 Marks)

4. Solve: $\frac{dy}{dx} = \frac{x+y+4}{x-y-6}$

5. Solve the differential equation $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$

Part C

(1 Q x 09 M= 09 Marks)

- (a) State Newton's law of cooling.
 - (b) A metal ball is heated to a temperature of $100^{\circ}C$ at time $t = \theta$ and it is placed in water which is maintained at $40^{\circ}C$. If temperature of the ball is reduced to $60^{\circ}C$ in 4 min, Find the time at which the temperature of the ball is $50^{\circ}C$.