

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 3

II Semester 2016-2017

MEA108: Workshop Practice

20 April 2017

Instructions:

- i. Write legibly
- ii. Scientific and non programmable calculators are permitted

Part A

(2 Q x 4 M= 8 Marks)

- 1. Write the mechanism and features of metal cutting process?
- 2. What are the desired properties of cutting fluid and name any two cutting fluid.

Part B

(1 Q x 10 M≈ 10 Marks)

3. Explain briefly any five Lathe operations with suitable sketches.

Part C

(2Q x 6 M= 12 Marks)

- 4. A diamond-cutting tool when machined with other diamond work piece material at a cutting speed of 50 m/min lasted for 100 minutes. Determine the life of the tool when the cutting speed is increased by 25%. At what speed the tool is to be used to get a tool life of 180 minute. Assume n = 0.26
- 5. From a raw material of 100 mm length and 10 mm diameter, a component having length 100 mm and diameter 8 mm is to be produced using a cutting speed of 31.41 m/min and a feed rate of 0.7 mm/revolution. How many times we have to re-sharpen or regrind, if 1000 workpieces are to be produced. Assume n = 1.2 and C = 180.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set B

TEST 1

II Semester 2016-2017

Course: ME A 108 Workshop Practice

28 February 2017

Instructions:

Write legibly

Scientific and non-programmable calculators are permitted

Part A

(3 Q x 2 M≈ 6 Marks)

- 1. Define the term 'Manufacturing' and mention the five categories of manufacturing process.
- 2. Briefly explain different types of production techniques with suitable example.
- 3. Define the term quality and how does it aid in increasing the brand value of a product.

(2 Q x 5 M= 10 Marks)

- 4. Explain the following terms briefly.
 - a. Accuracy b. Precision c. Tolerance d. Reliability and c. Quality control
- 5. Define the term fits and limits. Explain different types of fits with a neat sketch.

Part C

(2 Q x 7 M= 14 Marks)

6. Let the size of bolt and mit are as follows.

Bolt: $17.55 \frac{+0.018}{+0.024}$

Not: $18.50 \frac{+0.018}{-0.013}$

- a) Find the type of tolerance given for bolt and nut.
- b) Find the type of fit between bolt and nut.
- c) Specify the best manufacturing process for bolt and nut.
- Explain briefly Interchangeability with an example. Do you think Interchangeability helps in reducing the number of rejects? Justify.