

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 2

II Somester 2016-2017

Course: CE A 202 Structural Analysis

17 April 2017

Instructions:

Write legibly and draw clear diagrams wherever required.

ii. Scientific and non-programmable calculators are permitted.

Part A

(1 Q x 8 M= 08 Marks)

1. Analysis the given Truss system shown in Figure 1 by the method of joints.

Figure 1

Part B

(1 Q x 10 M≈ 10 Marks)

A symmetrical three-hinged parabolic arch has a span of 24 m and central rise of 4m. It is subjected
to a UDL of 20 kN/m for a length of 9 m starting from left hand support. Draw the Bending Moment
Diagram showing the position of maximum positive and negative bending moment with its
magnitude.

Part C

(1 Q x 12 M= 12 Marks)

 Analyse the continuous beam shown in Figure 2 by Moment Distribution Method, Draw Bending Moment Diagram (BMD) and Shear Force Diagram (SFD).

Figure 2

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 2

II Semester 2016-2017

Course: CE A 202 Structural Analysis

20 March 2017

Instructions:

i. Write legibly and draw clear diagrams wherever required.

Scientific and non-programmable calculators are permitted.

Part A

(2 Q x 5 M= 10 Marks)

1. Find the deflection for a fixed beam shown in figure 1.

2. Express the deflection obtained in Question 1 it in terms of simply supported deflection.

Part B

(1 Q x 8 M= 8 Marks)

3. A beam of length 16 m consists of spans AB and BC each of 8m long and is simply supported at A, B and C shown in figure 2. The beam carries a uniformly distributed load of 40 kN/m on the whole length. Find the reactions at the supports and the support moments by Clapeyron's Theorem of Three Moments. Draw the Shear Force Diagram.

(1 Q x 12 M= 12 Marks)

 Analyse the continuous beam shown in figure 3 by slope deflection method. Draw Bending Moment Diagram (BMD) and Shear Force Diagram (SFD).

Figure 3

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 1

JJ Semester 2016-2017

Course: CE A 202 Structural Analysis

20 February 2017

Instructions:

- i. Write legibly
- Scientific and non programmable calculators are permitted

Part A

 $(4 \text{ Q} \times 2.5 \text{ M} = 10 \text{ Marks})$

- 1. List different types of beams with neat sketch.
- 2. What do you mean by statically determinate and indeterminate beams? Give examples for each one.
- What do you mean by Shear force and Bending moment? Write down the relationship between shear force and bending moment.
- 4. Calculate the support reactions RA and RB for the beam given below.

Part B

(2 Q x 5 M= 10 Marks)

5. Draw the Shear Force Diagram and Bending Moment Diagram for the beam given below.

6. Find the degree of static indeterminacies for the structures given below.

Page 1 of 2

Part C

(1 Q x 10 M= 10 Marks)_{es}

 Find the support reactions R_A and R_B at the support A and B for the propped cantilever beam given below.

