

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 3

II Semester 2016-2017

Course: ME A 204 IC Engines

18 April 2017

Instructions:

- i. Write legibly and draw free-hand sketches, wherever necessary
- Scientific and non-programmable calculators are permitted

Part A

(3 Q x 3 M= 9 Marks)

- 1. What is octane number?
- 2. What are the emissions that come out of engine exhaust?
- 3. What is smog?

Part B

(2 Q x 6 M= 12 Marks)

- 4. Find out air-fuel ratio and the exhaust products when LPG (C3H8) is used as an engine fuel,
- 5. What are catalytic converters? How do they help in reducing HC, CO and NO_x emissions?

Part C

6. Explain the sources of hydrocarbon emissions from SI.

(5 marks)

Find out air-fuel ratio and the exhaust products for methanol (CH₄O) gas.

(4 marks)

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 2

II Semester 2016-2017

Course: ME A 204 IC Engines

21 March 2017

Instructions:

- j. Write legibly and draw free-hand sketches, wherever necessary
- Scientific and non-programmable calculators are permitted ii.

Part A

(3 Q x 3 M= 9 Marks)

- What are the typical constituents of a heat balance sheet?
- Briefly explain knocking in SI engines.
- 3. Mention any three methods to measure friction power.

Part B

(2 Q x 6 M= 12 Marks)

- 4. Draw the pressure versus crank-angle diagram for SI engines and list out the various stages of combustion.
- 5. A more test on a 2 cylinder, four stroke diesel engine gave the brake power measurements were as follows:

With all cylinders

34.5 kW

With cylinder No. 1 cut out 14.9 kW

With cylinder No. 2 cut out 14.3 kW

Estimate the indicated power of the engine.

Part C

(1 Q x 9 M= 9 Marks)

6. During the trial of a single-cylinder, 4 stroke oil engine using Prony braking system, the following results were obtained for one hour basis.

•	Cylinder diameter	200	20 cm
٠	Stroke	es.	40 cm
•	Mean effective pressure	=	$6x10^5 \text{ N/m}^2$
٠	Engine torque	==	407 Nm
•	Engine speed	<u></u>	250 rpm
•	Mass flow rate of oil	esec.	4 kg/h
•	Calorific value of fuel	:==	43000 kJ /kg
٠	Cooling water flow rate	225	270 kg/h
٠	Flue gas flow rate	227	124 kg/h
٠	Water inlet temperature to engine	Ξ.	15^0 C
			_

Water outlet temperature from engine = $60^{\circ}\mathrm{C}$

Temperature of exhaust gases $420^{6}C$

Room temperature $20^{\circ}\mathrm{C}$

Specific heat of exhaust gas ∃ kJ/kg K Specific heat of water 4.18 kJ/kg K =

Calculate : (i) Indicated power (ii) Brake power and also draw up a heat balance sheet for the test in kJ/h basis

PRESIDENCY UNIVERSITY, BENGALURÚ SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 1

U Semester 2016-2017

Course: ME A 204 J C Engines

21 February 2017

Instructions:

- i. Write legibly and draw free-hand sketches, wherever necessary
- ii. Scientific and non-programmable calculators are permitted

Part A

(3 Q x 3 M= 9 Marks)

- 1. List 3 differences between SI engines and CI engines
- Define the following efficiencies:
 - (i) Brake thermal efficiency (ii) Relative efficiency (iii) Mechanical efficiency
- 3. What is valve overlapping with respect to valve timing diagram?

Part B

 $(2 \ Q \times 6 \ M = 12 \ Marks)$

- 4. Explain with neat sketch the actual valve timing diagram of a 4 stroke CI Engine.
- 5. Single cylinder diesel engine develops 60 kW. Mass flow rate of fuel is 4.76 x 10⁻³ kg/s and calorific value of fuel is 42000kJ/kg. Mechanical efficiency and clearance volume of the engine is 80% and 98 cc respectively. The engine has a bore of 12 cm and stroke of 10 cm. Calculate (i)Swept volume (ii) Compression ratio (iii) Brake thermal efficiency (iv) Indicated power (v) Friction power

Part C

(1 Q x 9 M≈ 9 Marks)

6. Following data are available for a single cylinder four stroke petrol engine:

Brake power

∞ 75 kW

Engine rpm

= 400

Mechanical efficiency

80 %

Compression ratio

6.5

For air, γ

1.4

Brake mean effective pressure=

8.4 bar

Specific fuel consumption

19.05 kg/h

Calorific value of fuel

44300 kJ /kg

• Ratio of stroke to diameter (L/d) = 1

Calculate: (i)air standard efficiency (ii) brake thermal efficiency (iii) Indiacted power (iv) bore and stroke length