

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 3

Il Semester 2016-2017

Course: COE A 208 Theory of Computation ...

20 April 2017

Instructions:

- Answer all questions
- Read the question and answer accordingly

Part A

 $(5 \times 2 M = 10 Marks)$

- 1. When a CFG is said to be in CNF and GNF
- 2. Define NPDA formally
- 3. Define Unit production and Nullable production with respect to CFG
- 4. Eliminate useless, Nullable productions from the given Grammar
 - S -> ASI AIb
 - A→ aAja
 - B→ab
- 5. Give two examples of two non-context free languages

Part B

(2 Q x 5 M= 10 Marks)

- 6. State pumping lemma for CFL and Sow that CFL's are not closed under intersection by example.
- 7. Prove that CFL's are not closed under difference, in general but closed under regular difference

Part C

(1Q x 10 M= 10 Marks)

 Define the two types of acceptance of a language by PDA. Construct a NPDA that accepts the set of all palindromes of odd length over {0, 1}, by final state.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 2				
II Se	mester 2016-2017 Course: COE A 208 Theory of Computation	23 March 2017		
Insti	uctions:			
	i. Answer all questions			
	ii. Read the question and answer accordingly			
· 72	Part A			
) .	Define CCC with an evenue	$(5 \times 2 M = 10 Marks)$		
2.	Define CFG with an example. Define Language generated by a grammar.			
3.	· -			
4.	For the given grammar, derive the word using leftmost derivation. aaabbb S→SS aSb bSa ^			
5.	In a parse tree, the internal vertices are labeled	_ and external vertices are		
	Part B			

(2 Q x 5 M= 10 Marks)

Define Moore and Mealy Machine. When Moore machine and Mealy machine said to be equivalent.
 Convert the following Moore machine to Mealy machine

Sate	Input	Input	Output
	0	1	
qO	q0	q1	à
q1	- q2	q1	b
q2	q2	q2	a

7. Prove that L1U L2 and L1 L2 are CFL's if L1 and L2 is a CFL.

(1 Q x 10 M= 10 Marks)

8. Minimize the following DFA.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 30

Max Time: 55 Mins

Weightage: 15 %

Set A

TEST 1

H Semester 2016-2017

Course: COE A 208 Theory of Computation

23 February 2017

Instructions:

i. Answer all questions

ii. Read the question and answer accordingly

Part A

(2 x 1 M= 2 Marks)

(4 x 2 M= 8 Marks)

- 1. Formally define Non deterministic Finite Automata.
- 2. Find A- closure for q1 state?

3. Write the Transition table for the given Transition diagram.

- 4. List at least two differences between DFA and NFA.
- Using the properties of regular language prove that L₁ \ L₂ is regular.

6. Identify the language accepted by this machine.

C.

Part B

(2 Q x 5 Mar 10 Marks)

- 7. Construct an epsilon ^ NFA for the given regular expression.
 (01 + 2*) 1
 - 8. Construct an equivalent DFA with state diagram for the given NFA

State / Input	a	1
→ q ₀	\mathbf{q}_0	q 1
91	{q ₁ ,q ₂ }	\mathbf{q}_{1}
6 92	Q ₂	{q ₁ ,q ₂ }

Part C

(1 Q x 10 M= 10 Marks)

9. State Pumping Lemma and using pumping lemma prove that L={ WW ^R/w is from the set {a,b}} language is not regular.

 $10 \, \mathrm{M}$