Roll No		Roll No							
---------	--	---------	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING MID TERM EXAMINATION - OCT 2023

Semester: Semester VII - 2020 Date: 30-OCT-2023

Course Code: CSE3133 **Time**: 11:30AM - 1:00PM

Course Name : Sem VII - CSE3133 - Predictive Analytics for Big Data Max Marks : 60

Program: COD Weightage: 30%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

(5 X 2 = 10M)

1. Find out the characteristics of big data.

(CO1) [Knowledge]

2. Define the data volume.

(CO1) [Knowledge]

3. Write down the difference between classical and exploratory data analysis.

(CO2) [Knowledge]

4. Define stratified sampling.

(CO2) [Knowledge]

5. Show the architecture diagram for EDA.

(CO2) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

(2 X 15 = 30M)

- 6. Summarise the big data technologies in
 - a. Apache Hadoop
 - b. Apache Spark
 - c. Mongo DB
 - d. Cassandra
 - e. Apache Kafka
 - f. Qlikview
 - g. Qlik Sense
 - h. Tableau

(CO1) [Comprehension]

7. Explain the Big Data Infrastructure with its design architecture diagram, where it accepts data in various formats, allowing real-time storage and analysis.

(CO1) [Comprehension]

PART C

ANSWER THE FOLLOWING QUESTION

 $(1 \times 20 = 20M)$

8. Solve the weight of evidence and information value for the given age-group table and finally make variable predictiveness

Age-Group	Good	Bad	WoE	Information
18-25	1000	170		
25-35	1000	230		
36-45	1800	95		
46-55	1602	106		
56-70	1900	92		

(CO2) [Application]