

ID NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40 % Max Marks: 80 Max Time: 2 hrs. 10 May 2018, Thursday

ENDTERM FINAL EXAMINATION MAY 2018

Even Semester 2017-18

Course: **ECE 101 Elements of Electronics Engineering**

II Sem. Chemistry cycle

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

(4 Q x 5 M = 20 Marks)

1. Perform the following

- a) $(101010.111)_2 = (?)_8$
- b) $(123)_d = (?)_o$
- c) $(123)_H = (?)_d$
- d) $(721)_0 = (?)_H$
- 2. Find sum of the following binary numbers
 - a. $(11001)_2 + (10110)_2$
 - b. $(111100)_2 + (110011)_2$
- 3. Show that A(A+B) = A and A+A'B=(A+B) using Boolean theorems
- 4. Write the truth table of NAND, NOR, XOR, XNOR, AND gates

Part B

 $(3 Q \times 10 M = 30 Marks)$

- 5. Perform $(11110)_2 (1010)_2$ using
 - a. 1's complement method
 - b. 2's complement method

6. Perform the following using BCD addition method

a.
$$(184)_{10} + (576)_{10}$$

b.
$$(3475)_{10} + (1353)_{10}$$

7. State and prove a. Distributive laws b. D Morgan's theorems

Part C

8. a. Simplify the following Boolean expression and implement using Basic gates

i.
$$f = A'B'C + AB'C' + ABC' + ABC' + ABC$$

ii.
$$f = AB + A'CD + A'BD + A'CD' + ABCD$$

b. Write the Boolean expression for the following truth table. Simplify the expression for minimum number of literals and implement using basic gates (XYZ are inputs and f is output)

X	Υ	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Draw the block diagram of 8085. Explain flag register & Types of bus present in 8085

ID NO:	

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20%

Max Marks: 40

Max Time: 1 hr.

26 March Monday 2018

TEST - 2

SET A

Even Semester 2017-18

Course: ECE 101 Elements of Electronics Engineering

II Sem. Chemistry Cycle

Instruction:

(i) Read the question properly and answer accordingly.

- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted

Part A

(4 Q x 4 M = 16 Marks)

- 1. Define α , β , γ & Write the relationship between emitter, base and collector current
- 2. Mention any two difference between FET and BJT.
- 3. If $V_{CEQ}=6V$, $I_{CQ}=1mA$, Then find the value of R_C and R_B of fixed bias circuit with $V_{CC}=12V$ with assume $\beta=100$ and $V_{BE}=0.7V$
- 4. With necessary waveforms Define Amplitude modulation and Frequency modulation

Part B

(2 Q x 8 M = 16 Marks)

- 5. Explain input and output characteristics of transistor in CE configuration. Show the operating region of transistor on the output characteristics.
- 6. Explain the construction and working of N-Channel JFET.

Part C

 $(1Q \times 8 M = 8 Marks)$

7. Explain the block diagram of communication system. What is the need of modulation?

ID NO:	
--------	--

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 % Max Marks: 40 Max Time: 1 hr. 22 Feb Thursday 2018

TEST - 1

Even Semester 2017-18 Course: ECE 101 Elements of Electronics II Sem. Chem. Cycle

Engineering

Instruction:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

(4 Q x 4 M = 16 Marks)

1. For the circuit shown in fig (1) find the current, voltage drop in 40Ω resistor

Fig (1).

- 2. Explain ideal approximation of diode
- 3. Draw the DC Load line for the diode circuit shown in fig (2).

Fig (2).

4. What is the ripple factor of Half wave rectifier, Full Wave rectifier, HWR with C filter, FWR With C filter

Part B

(2 Q x 8 M = 16 Marks)

- 5. Draw VI Characteristics of Diode. Define static and dynamic resistance of diode
- 6. A diode is forward biased with a Voltage of 0.5V if saturation current is 1μ A and η of a diode is 2, then find the diode current at room temperature of 27° C.

.

Part C

 $(1Q \times 8 M = 8 Marks)$

7. Explain the operation of Half Wave Rectifier. Derive expressions Vrms.