ID NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40 % Max Marks: 80 Max Time: 02 hrs. 08 May Tuesday 2018

ENDTERM FINAL EXAMINATION MAY 2018

Even Semester 2017-18 Course: PHY 101 Engineering Physics II Sem. Physics cycle

Instructions:

(i) Read the question properly and answer accordingly.

- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted
- (iv) $h = 6.625 \times 10^{-34} \text{ Js}, m_e = 9.1 \times 10^{-31} \text{ kg}, e = 1.602 \times 10^{-19} \text{ C}$

Part A

(5 Q x 4 M = 20 Marks)

- 1. Define p-type and n-type semiconductors
- 2. Define ionic and orientation polarization
- 3. Define phase and group velocity
- 4. Mention any two important features of quantum free electron theory of metals
- 5. Define mean free path and Fermi energy

Part B

(3 Q x 10 M = 30 Marks)

- 6. Derive relation between phase and group velocity. Calculate the minimum energy an electron can possess in an infinitely deep potential well of width 5 nm.
- 7. Define electronic polarizability. The polarizability of Ne gas is 0.35X10⁻⁴⁰ Fm². If the gas contains 2.7 X 10²⁵ atoms/m³ at 0^{0C} and 1 atmospheric pressure, calculate its relative dielectric constant
- 8. Explain with a neat sketch the construction working and V-I characteristics of solar cell.

Part C

 $(2Q \times 15 M = 30 Marks)$

- 9. Derive the time-independent (1-D) Schrodinger wave equation.
- 10. (i) Deduce Clausius- Mossotti equation from local field expression for a dielectric having contribution due to electrical polarizability alone. (12M)
 - (ii) The mean free collision time of copper at 300K is equal to 2×10^{-14} s. Determine its electrical conductivity. Given that free electron density, $n = 8.5 \times 10^{28}$ m⁻³. (3M)

ID NO:	
--------	--

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20% Max Marks: 40 Max Time: 1 hr. 28 March Wednesday 2018

TEST - 2

SET B

Even Semester 2017-18 Course: PHY 101 Engineering Physics II Sem Ph

II Sem Physics. cycle

Instruction:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted

Part A

(3 O x 4 M = 12 Marks)

- 1. Define total internal reflection with suitable diagrams.
- 2. Define superconductivity and Meissner effect.
- 3. Define the following terms
 - I. Magnetic field strength II. Magnetic dipole moment

Part B

(2 Q x 6 M = 12 Marks)

- 4. The numerical aperture of a fiber is 0.25 and relative refractive index is 0.02. Determine the refractive indices of the core and cladding of a fiber.
- 5. A magnetic field of 1800 A/m produces a magnetic flux of 3 X 10⁻⁵ Wb in an iron bar cross-sectional area 0.2 cm². Calculate permeability.

Part C

(1 Q x 16 M = 16 Marks)

- 6. I. Define relative refractive index. Write a short note on point to point communication system with neat diagram. (10 M)
 - II. Show that superconducting material is diamagnetic in nature and obtain $\chi = -1$. (6 M)

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 %

Max Marks: 40

Max Time: 1 hr.

20 Feb Tuesday 2018

TEST - 1

Even Semester 2017-18 Course: PHY 101 Engineering Physics

II Sem Physics cycle

Instruction:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted
- (iv) Given:

 $h = 6.625 \times 10^{-34} Js$, $k_B = 1.38 \times 10^{-23} J/K$ and $c = 3 \times 10^8 m/s$.

Part A

(4 Q x 3 M = 12 Marks)

- 1. Name the requisites of laser system?
- 2. What are the fundamental mode of vibration in CO₂ molecule
- 3. Write any three applications of Holography.
- 4. Define induced absorption with diagram.

Part B

(2 Q x 6 M = 12 Marks)

- 5. Find the wavelength at which the rates of spontaneous and stimulated emission become equal at a temperature of 55.38×10³ K.
- A medium in thermal equilibrium at temperature 300K has two energy levels with a wavelength separation of 1µm. Find the ratio of population densities of the upper and lower levels.

Part C

 $(1Q \times 16 M = 16 Marks)$

7. Define population inversion. For atomic transitions, derive the expression for Einstein's relations and hence deduce the expression for the ratio of stimulated emission rate to the spontaneous emission rate.