I D NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40 \%
Max Marks: $80 \quad$ Max Time: 2 hrs. 08 May Tuesday 2018

ENDTERM FINAL EXAMINATION MAY 2018

Even Semester 2017-18
Course: MAT 104 Engineering Mathematics-IV

IV Sem. All Branches

Instructions:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted

Part A

Answer ALL questions (3 $\mathrm{Q} \times 8 \mathrm{M}=24$ Marks)

1. Using Taylor's series method compute $y(0.2)$ given that $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$ taking $h=0.2$.
2. Given that $\frac{d y}{d x}=x+y, \quad y(0)=1, \quad$ find an approximate value of y at $x=0.1$ and $x=0.2$ using modified Euler's method.
3. Solve $u_{x x}=u_{t}, \quad 0<x<1, t>0$, given $u(x, 0)=0, u(0, \mathrm{t})=0$ and $u(1, \mathrm{t})=t$ for one time step using Crank - Nicholson method taking $h=\frac{1}{4}$ and $k=\frac{1}{16}$.

Part B

Answer ALL questions (2 $\mathrm{Q} \times 12 \mathrm{M}=24$ Marks)
4. Find $y(0.1)$ using Runge-Kutta method of fourth order given that $y^{\prime}=x^{2}-y$, $y(0)=1$.
5. Using finite difference method, solve the boundary value problem $\frac{d^{2} y}{d x^{2}}+y=x$, $y(0)=0$ and $\quad y(1)=2 \quad$ taking $h=\frac{1}{4}$.

Part C

Answer any TWO questions (2Q x $16 \mathrm{M}=32$ Marks)
6. Using Runge-Kutta method of fourth order solve the simultaneous differential equations $\frac{d y}{d x}=1+x z, \frac{d z}{d x}=-x y, y(0)=0, z(0)=1$ at $x=0.3$ with $h=0.3$.
7. Solve the Laplace equation $u_{x x}+u_{y y}=0$ over the square region given below.

Carry out 2 iterations using Gauss-Seidel iterative method.
8. Solve $16 u_{x x}=u_{t t}, 0<x<5, \mathrm{t}>0$, subject to the conditions $u(0, t)=0, u(5, t)=0$, $u(x, 0)=x^{2}(5-x)$ and $u_{t}(x, 0)=0$ for 4 time steps using explicit finite difference method with $h=1$ and $k=\frac{1}{4}$.

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20\%

Even Semester 2017-18

Max. Marks: $40 \quad$ Max Time: 1 hour
TEST - 2
Course: MAT 104 Engineering Mathematics - IV

29 March Thursday 2018
SET A
IV Semester All Branches

Instructions:

(i) Read the questions properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A

(2Q x 8M = 16 Marks)

1. Use Newton's forward interpolation formula to estimate the value of $y(79)$ given that

x	75	80	85	90
y	246	202	118	40

2. Use Lagrange's interpolation formula to find the value of $y(2)$ from the following data:

X	0	1	3	4
Y	-12	0	6	12

Part B
(1Q $\times 10 \mathrm{M}=10$ Marks)
3. Using Newton's divided difference formula evaluate $f(10)$ given that

x	4	7	9	12
$f(x)$	-43	83	327	1053

Part C
$(1 Q \times 14 \mathrm{M}=14$ Marks $)$
4. Compute $f^{\prime}(4)$ and $f^{\prime \prime}(4)$ numerically from the following data

x	0	2	5	1
$f(x)$	0	8	125	1

OR

5. Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$, by dividing the interval of integration into 6 equal parts, using
(i) trapezoidal rule (ii) Simpson's $1 / 3$ rule and (iii) Simpson's $3 / 8$ rule.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 \%
Max Marks: 40
Max Time: 1 hr .
19 Feb Monday 2018

TEST - 1

Even Semester 2017-18 Course: MAT 104 Engineering Mathematics - IV IV Sem. All Branches

Instructions:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A

(2Q x $8 \mathrm{M}=16$ Marks)

1. Using Newton-Raphson method find a positive root between 1 and 2 of the equation $x^{4}-x-10=0$ correct up to three decimal places.
2. Find the dominant eigenvalue and the corresponding eigenvector of the matrix $\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ using power method.

Part B

(1Q x 10M = 10 Marks)
3. Solve the system of linear equations $10 x+2 y+z=9, \quad x+10 y-z=-22$ and $-2 x+3 y+10 z=22$ by means of Gauss-Seidel iterative method.

Part C

(1Q x 14M = 14 Marks)
4. Solve the simultaneous linear equations $x+y+z=1,4 x+3 y-z=6$ and $3 x+5 y+3 z=4$ using LU decomposition method.

OR

5a. Find a positive root between 0 and 1 of the equation $x e^{x}-1=0$, correct up to two decimal places, using bisection method.
(7 marks)
5b. Use fixed point iterative method to find a real root between 0 and 1 of the equation $3 x=\cos x+1$, correct up to three decimal places.
(7 marks)

