PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION - NOV 2023

Semester : Semester V - 2021
Course Code : MEC4004
Course Name : Sem V - MEC4004 - Dynamics of Machines
Program : B. TECH

Date : 6-NOV-2023
Time : 9:30AM-11:00AM
Max Marks : 50
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

1. When will a distributed mass can be replaced by two point masses to have the same dynamical properties?
(CO1) [Knowledge]
2. What is an Applied Force?
(CO1) [Knowledge]
3. Write expression for the Force acting on Connecting Rod.
(CO1) [Knowledge]
4. Define Coefficient of Fluctuation of speed in flywheel.
(CO2) [Knowledge]
5. Define Coefficient of Fluctuation of Energy in flywheel.
(CO2) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

$$
\text { (2 X } 10=20 \mathrm{M})
$$

6. If the crank and the connecting rod are 300 mm and 3 m long respectively and the crank rotates at a constant speed of 200 r.p.m., determine: 1. The crank angle at which the maximum velocity occurs
(CO1) [Comprehension]
7. Flywheel is used to store the Energy and release the Energy. Identify in which form it stores the energy and identify the relation for Fluctuation of Energy in Flywheel.
(CO2) [Comprehension]

PART C

ANSWER THE FOLLOWING QUESTION

8. The crank-pin circle radius of a horizontal engine is 300 mm . The mass of the reciprocating parts is 250 kg . When the crank has travelled 60° from I.D.C., the difference between the driving and the back pressures is $0.35 \mathrm{~N} / \mathrm{mm} 2$. The connecting rod length between centres is 1.2 m and the cylinder bore is 0.5 m . If the engine runs at 250 r.p.m. and if the effect of piston rod diameter is neglected, calculate: 1. pressure on slide bars, 2. thrust in the connecting rod, 3. tangential force on the crank-pin, and 4. turning moment on the crank shaft.
(CO1) [Application]
