ID NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40% Max Marks: 80 Max Time: 2 hrs. 14 May 2018, Monday

ENDTERM FINAL EXAMINATION MAY 2018

Course : CSE 208 Theory of Computation

IV Sem. CSE

Instructions:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted

Part A

(4 Q x $6 \mathrm{M}=24$ Marks)

1. Consider the transition table given below

∂	a	B
$\rightarrow \mathrm{q}_{0}$	q 1	-
q 1	-	q 2
${ }^{*} \mathrm{q} 2$	q 2	q 2

a. Draw transition diagram
b. Identify two strings accepted by the automata.
c. Identify two strings rejected by the automata
2. Construct the NFA with four states for $L=\left\{a^{n}: n \geq 0\right\} \cup\left\{b^{n} a n \geq 1\right\}$
3. Design the context free grammar for the Language given below:

$$
L=\left\{0^{n} 1^{n} / n \geq 0, m \geq 0\right\}
$$

4. Define the following:
a. DPDA
b. ID of PDA
c. $\mathrm{L}(\mathrm{M})$ of PDA

Part B

$$
\text { (4 Q x } 9 \text { M = } 36 \text { Marks) }
$$

5. State the Pumping Lemma for the Regular Language and prove that the language $L=\left\{w w^{R} / w €(a, b)^{*}\right\}$ is not regular.
6. Given the regular expression $a b(a+b)^{*}$. Construct its equivalent $€$ nfa.
7. Obtain a PDA to accept the following language by final state.
$L=\left\{W c W^{R} \mid W €(a, b)^{*}\right\}$. Draw the transition diagram for PDA. Also show the moves made by PDA for the string aacbb.
8. Convert the following CFG to GNF

$$
\begin{aligned}
& S \rightarrow A A \mid 0 \\
& A \rightarrow S S \mid 1
\end{aligned}
$$

Part C

$$
\text { (2 Q x } 10 \text { M = } 20 \text { Marks) }
$$

9. State the Pumping Lemma for Context free Language and prove that $L=\left\{a^{n} b^{n} c^{n}\right.$ / $n>=0\}$ is not context free.
10. Obtain a Turing machine to accept the language $L=\left\{a^{n} b^{n} \mid n>=1\right\}$

Weightage: 20\%
Max Marks:40
Max Time: 1 hr .
2 April Monday 2018

TEST - 2
SET A
Even Semester 2017-18 Course: CSE 208 Theory Of Computation IV Sem. CSE

Instruction:

1) Read the question properly and answer accordingly.
2) Question paper consists of 3 parts.
3) Scientific and Non-programmable calculators are permitted

Part A

(4Q x $4 \mathrm{M}=16 \mathrm{Marks}$)

1. What is homomorphism? Explain with an example.
2. Obtain Regular expression for the language $L=\left\{a^{2 n} b^{2 m} \mid n>=0, m>=0\right\}$
3. Define $€ / ג$ NFA?
4. Find $€ / \lambda$ closure of the states $\{2,3,8\}$ in the $€ / ג$ NFA given below.

Part B

(2Q x 8M = 16 Marks)
5. Convert the following $€$ NFA to its equivalent DFA.

6. State Pumping lemma, using pumping lemma prove that the language $L=\left\{a^{n!} \mid n>=0\right\}$ is not regular.

Part C

(1Q x $8 \mathrm{M}=8$ Marks)
7. Minimize the below given DFA, using table filling method?

δ	0	1
A	B	E
B	C	F
${ }^{*} \mathrm{C}$	D	H
D	E	H
E	F	I
$* \mathrm{~F}$	G	B
G	H	B
H	I	C
${ }^{*} \mathrm{I}$	A	E

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 \%
Max Marks: 40
Max Time: 1 hr .
23 Feb Friday 2018

TEST - 1
Even Semester 2017-18 Course: CSE 208 Theory of Computations IV Sem. Computer Science

Instruction:

(i) Read the question properly and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted

Part A

(4 Q x $4 \mathrm{M}=16$ Marks)

1. a) Explain the components of Finite Automata
b) Give the formal definition of NFA or NFA with λ
2. a) Define grammar using 4-tuple definition
b) Consider the grammar $\mathbf{G}=(\{\mathbf{S}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P})$, with \mathbf{P} is given by,

$$
\mathrm{S} \rightarrow \mathrm{aSb}
$$

$$
S \rightarrow \lambda
$$

Derive a string aabb using the above grammar.
3. Identify the five tuples of Finite Automaton using the given transition table

States	Inputs	
	a	b
$\rightarrow \mathrm{q}_{0}$	q_{0}	q_{1}
${ }^{*} \mathrm{q}_{1}$	q_{0}	q_{1}

4. Identify two strings in each case given below using the following Finite Automaton
i) Accepted
ii) Rejected

Part B

5. Prove that regular languages are closed under Union operation.
6. Construct a DFA that accepts all strings that contains 001 as substring over the alphabet $\Sigma=\{0,1\}$

Part C

(1Q x $8 \mathrm{M}=8$ Marks)
7. Convert the NFA defined by,$M=(\{q 0, q 1, q 2, q 3\},\{a, b\}, \delta, q 0,\{q 3))$ and δ is defined by

$$
\begin{aligned}
& \delta(q 0, a)=\{q 0, q 1\} \\
& \delta(q 0, b)=\{q 0\} \\
& \delta(q 1, b)=\{q 2\} \\
& \delta(q 2, a)=\{q 3\}
\end{aligned}
$$

with initial state q 0 and final state q 3 into an equivalent DFA.

