

ID NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40% Max Marks: 80 Max Time: 2 hrs. 14 May 2018, Monday

ENDTERM FINAL EXAMINATION MAY 2018

Even Semester 2017-18 Course : CSE 208 Theory of IV Sem. CSE

Computation

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

(4 Q x 6 M = 24 Marks)

1. Consider the transition table given below

д	а	В
$\rightarrow q_0$	q1	-
q1	-	q2
*q2	q2	q2

- a. Draw transition diagram
- b. Identify two strings accepted by the automata.
- c. Identify two strings rejected by the automata
- 2. Construct the NFA with four states for L={ $a^n : n \ge 0$ } U { $b^n a n \ge 1$ }
- 3. Design the context free grammar for the Language given below:

L= {
$$0^n 1^n / n \ge 0, m \ge 0$$
 }

- 4. Define the following:
 - a. DPDA b. ID of PDA c. L(M) of PDA

Part B

(4 Q x 9 M = 36 Marks)

- 5. State the Pumping Lemma for the Regular Language and prove that the language $L = \{ ww^R / w \in (a, b)^* \} \text{ is not regular}.$
- 6. Given the regular expression ab(a+b)*. Construct its equivalent € nfa.
- Obtain a PDA to accept the following language by final state.
 L= {WcW^R | W€ (a,b)*}. Draw the transition diagram for PDA .Also show the moves made by PDA for the string aacbb.
- 8. Convert the following CFG to GNF

$$S \rightarrow AA \mid 0$$

 $A \rightarrow SS \mid 1$

Part C

 $(2 Q \times 10 M = 20 Marks)$

- 9. State the Pumping Lemma for Context free Language and prove that $L = \{ a^n b^n c^n / n > = 0 \}$ is not context free.
- 10. Obtain a Turing machine to accept the language L={ aⁿbⁿ |n>=1 }

ID NO:	
--------	--

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20% Max Marks:40 Max Time: 1 hr. 2 April Monday 2018

TEST - 2

SET A

Even Semester 2017-18 Course: CSE 208 Theory Of Computation IV Sem. CSE

Instruction:

- 1) Read the question properly and answer accordingly.
- 2) Question paper consists of 3 parts.
- 3) Scientific and Non-programmable calculators are permitted

Part A

 $(4Q \times 4 M = 16Marks)$

- 1. What is homomorphism? Explain with an example.
- 2. Obtain Regular expression for the language L= $\{a^{2n}b^{2m}|n>=0,m>=0\}$
- 3. Define €/ג NFA?
- 4. Find €/λ closure of the states {2,3,8} in the €/λ NFA given below.

5. Convert the following € NFA to its equivalent DFA.

6. State Pumping lemma, using pumping lemma prove that the language $L=\{a^{n!}\mid n>=0\}$ is not regular.

Part C

 $(1Q \times 8 M = 8 Marks)$

7. Minimize the below given DFA, using table filling method?

	δ	0 4	1
io Sie	→ A	В	E
	В	C	F
	*C	D	H
	D	E	H
	· E	F	I I
	*F	G	В
	G	H	В
,	Н	I	C
	*I	A	E

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 % Max Marks: 40 Max Time: 1 hr. 23 Feb Friday 2018

TEST - 1

Even Semester 2017-18 Course: **CSE 208 Theory of Computations** IV Sem. Computer

Science

Instruction:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted

Part A

(4 Q x 4 M = 16 Marks)

- 1. a) Explain the components of Finite Automata
 - b) Give the formal definition of NFA or NFA with λ
- 2. a) Define grammar using 4-tuple definition
 - b) Consider the grammar **G=({S},{a,b},S,P)**,with **P** is given by,

 $S \rightarrow aSb$

 $S \rightarrow \lambda$

Derive a string **aabb** using the above grammar.

3. Identify the five tuples of Finite Automaton using the given transition table

	Inputs		
States	а	b	
→ q ₀	q o	q ₁	
*q1	q ₀	q ₁	

- 4. Identify two strings in each case given below using the following Finite Automaton
 - i) Accepted

ii) Rejected

Part B

 $(2Q \times 8 M = 16 Marks)$

- 5. Prove that regular languages are closed under **Union** operation.
- 6. Construct a DFA that accepts all strings that contains **001** as substring over the alphabet $\Sigma = \{0,1\}$

Part C

 $(1Q \times 8 M = 8 Marks)$

7. Convert the NFA defined by ,M=($\{q0,q1,q2,q3\}, \{a,b\}, \delta, q0, \{q3\}$) and δ is defined by

 $\delta(q0,a)=\{q0,q1\}$

 $\delta(q0,b)=\{q0\}$

 $\delta(q1,b)=\{q2\}$

 $\delta(q_{2,a}) = \{q_{3}\}$

with initial state q0 and final state q3 into an equivalent DFA.