PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION - OCT 2023
Semester: Semester III-2022
Date : 2-NOV-2023
Course Code : PHY1002
Course Name : Sem III - PHY1002 - Optoelectronics and Device Physics
Time : 9:30AM - 11:00AM
Max Marks : 50
Program : B. TECH

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE FIVE QUESTIONS

1. Which band determines the electrical conductivity of a solid?
2. The \qquad is the lower-energy band, and it is typically filled with electrons (CO1) [Knowledge] (CO1) [Knowledge]
3. Define superconductivity?
(CO1) [Knowledge]
4. What type of impurity is added to obtain n type semiconductor?
(CO1) [Knowledge]
5. Which are the three important energy bands in solids?
(CO1) [Knowledge]

PART B

ANSWER ALL THE FOUR QUESTIONS

$4 \times 5=20 \mathrm{M}$
6. We know that, it is possible to destroy the superconductivity in the material by applying a certain magnetic field. This field is called critical field H_{C}. Classify superconductors based on this magnetic behavior.
(CO1) [Comprehension]
7. Are supercondutors diamagnetic materials? Justify with proof.
(CO1) [Comprehension]
8. Calculate the Hall voltage when a conductor carrying a current of 100 A , is placed in a magnetic field of 2.5 T. The conductor has a thickness of 2 cm , and the density of charge carriers inside the conductor is $6.8 \times 10^{28} \mathrm{~m}^{-3}$.
(CO1) [Comprehension]
9. Estimate the fraction of electrons in the conduction band at 303 K in Ge with $\mathrm{Eg}=0.72 \mathrm{eV}$.
(CO1) [Comprehension]

PART C

ANSWER ALL THE TWO QUESTIONS

$2 \times 10=20 M$
10. Find the intrinsic charge carrier concentration in a silicon crystal at 100 K . Given, $\mathrm{Eg}=1.1 \mathrm{eV}$, $m_{e}=m_{h}=9.1 \times 10^{-31} \mathrm{Kg}, k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ and $h=6.626 \times 10^{-34} \mathrm{~J} s$.
(CO1) [Application]
11. The energy band diagram of certain samples are represented in the figure. Identify A, B and C. Justify your answer. What is the significance of E_{F} ?

(CO1) [Application]

