Roll No

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING MID TERM EXAMINATION - OCT 2023

Semester : Semester III - 2022 Course Code : ECE3004 Course Name : Sem III - ECE3004 - Electromagnetic Theory Program : B. TECH

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

PART A

	ANSWER ALL THE QUESTIONS (5	X 2 = 10M)
1.	If $\overrightarrow{a} = \hat{a}_x + \hat{a}_y + \hat{a}_z$, $\overrightarrow{a} \cdot \overrightarrow{b} = 1$, and $\overrightarrow{a} \times \overrightarrow{b} = \hat{a}_y - \hat{a}_z$, evaluate \overrightarrow{b} .	
2.	Find the gradient of the function $x^2 + y^2 + z^2 = 9$.	(CO1) [Knowledge]
		(CO1) [Knowledge]
3.	For what numeric value of λ does the vector $\vec{A} = x^{2\hat{i}} + \lambda y \hat{j} + z^{2} \hat{k}$ become solenoid	al at the point $(1,0,1)$? (CO1) [Knowledge]
4.	Write down the mathematical form of Gauss divergence theorem.	
		(CO2) [Knowledge]
5.	What are the ranges of θ and ϕ in the spherical coordinate system?.	(CO2) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

- 6. Consider three vectors \vec{a} , \vec{b} and \vec{c} such that $\vec{a} = y\hat{i} + z\hat{j} + x\hat{k}$, $\vec{b} = z\hat{i} + x\hat{j} + y\hat{k}$ and $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$
 - (i) Can the scalar potential of $\vec{a} \times \vec{b}$ exist? If yes, find the potential. If no, justify your answer.
 - (ii) If the vector $\overrightarrow{b} \times \overrightarrow{c}$ is solenoidal at a point (k, 1, 1), find the value of k.

(CO1) [Comprehension]

Date : 2-NOV-2023 Time : 9:30AM - 11:00AM Max Marks : 50 Weightage : 25%

(2 X 10 = 20M)

7. Vector functions appear widely in electromagnetics especially as electric and magnetic fields and their derivatives. Let \vec{G} be a vector function such that $\vec{G} = \frac{\vec{r}}{r^3}$, then show that \vec{G} is solenoidal as well as irrotaional where $\vec{r} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$.

(CO1) [Comprehension]

PART C

ANSWER THE FOLLOWING QUESTION

(1 X 20 = 20M)

8. The Stoke's theorem relates a surface integral over a surface S to a line integral around the boundary curve of S and widely appears in electromagnetics. Apply Stoke's theorem to find the value of $\oint_{\mathcal{C}} (ydx + zdy + xdz)$ where C is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and the plane x + z = a

(CO2) [Application]