PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION - OCT 2023

Semester: Semester III-2022
Course Code : ECE3004
Course Name : Sem III - ECE3004 - Electromagnetic Theory
Program : B. TECH

Date : 2-NOV-2023
Time : 9:30AM - 11:00AM
Max Marks : 50
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

$(5 \times 2=10 \mathrm{M})$
1.

If $\vec{d}=\hat{a}_{x}+\hat{a}_{y}+\hat{a}_{z}, \vec{a} \cdot \vec{b}=1$, and $\vec{a} \times \vec{b}=\hat{a}_{y}-\hat{a}_{z}$, evaluate \vec{b}.
(CO1) [Knowledge]
2. Find the gradient of the function $x^{2}+y^{2}+z^{2}=9$.
(CO1) [Knowledge]
3. For what numeric value of λ does the vector $\vec{A}=x^{2} \hat{i}+\lambda y \hat{j}+z^{2} \hat{k}$ become solenoidal at the point $(1,0,1)$? (CO1) [Knowledge]
4. Write down the mathematical form of Gauss divergence theorem.

> (CO2) [Knowledge]
5. What are the ranges of θ and ϕ in the spherical coordinate system?.
(CO2) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

6. Consider three vectors \vec{a}, \vec{b} and \vec{c} such that $\vec{d}=y \hat{i}+z \hat{j}+x \hat{k}, \vec{b}=z \hat{i}+x \hat{j}+y \hat{k}$ and $\vec{c}=x \hat{i}+y \hat{j}+z \hat{k}$
(i) Can the scalar potential of $\vec{a} \times \vec{b}$ exist? If yes, find the potential. If no, justify your answer.
(ii) If the vector $\vec{b} \times \vec{c}$ is solenoidal at a point $(k, 1,1)$, find the value of k.
(CO1) [Comprehension]
7. Vector functions appear widely in electromagnetics especially as electric and magnetic fields and their derivatives. Let \vec{G} be a vector function such that $\vec{G}=\frac{\vec{r}}{r^{3}}$, then show that \vec{G} is solenoidal as well as irrotaional where $\vec{r}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}$.
(CO1) [Comprehension]

PART C

ANSWER THE FOLLOWING QUESTION

8. The Stoke's theorem relates a surface integral over a surface \mathcal{S} to a line integral around the boundary curve of \mathcal{S} and widely appears in electromagnetics. Apply Stoke's theorem to find the value of $\oint_{\mathcal{C}}(y d x+z d y+x d z)$ where \mathcal{C} is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane $x+z=a$
(CO2) [Application]
