PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION - DEC 2023

Semester : Semester I-2023
Course Code : EEE1001
Course Name : Fundamentals of Electrical and Electronics Engineering
Program : B.TECH

Date : 9-DEC-2023
Time : 11:30 AM - 01:00 PM
Max Marks : 50
Weightage : 25\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

($5 \times 2=10 \mathrm{M}$)

1. What is the equation of Current division rule as applied to Electrical circuits?
(CO1) [Knowledge]
2. What is inductive reactance in AC circuit, What is the unit?
(CO1) [Knowledge]
3. What is capacitive reactance in AC circuit ?, what is its unit?
(CO1) [Knowledge]
4. Capacitor is an example of \qquad
a) Active Element b) Inactive element c) Passive element d) Dissipating element
5. Amount of work to be done to move the charge from one place to another.is called as
a) Voltage b) Potential Difference c) Both of these d) Potential Break

ANSWER ALL THE QUESTIONS

(4 X $5=20 \mathrm{M}$)
6.

Determine the equivalent resistance across XY
(CO1) [Comprehension]
7. Two resistances $1 \Omega \& 2$ are connected is parallel: another two resistors $4 \Omega \& 6 \Omega$ are also connected in parallel. These two branches are connected in series. A Voltage of 100 V is applied across the combination. Find any 2 unknown values from the given data
(CO1) [Comprehension]
8. Define Form Factor in AC Circuits. Also Write the Voltage and Current equations in a purely inductive circuit
(CO1) [Comprehension]
9. Draw the phasor diagram of a circuit with only resistance \& a circuit with only pure inductance and briefly explain with appropriate diagrams
(CO1) [Comprehension]

PART C

ANSWER THE FOLLOWING QUESTION

(1 X $20=20 \mathrm{M})$
10. a) A resistance of R ohm is connected in series with a parallel combination of 5Ω and 10Ω. The total power consumed by the Circuit is 1200 W the applied Voltage is 100 V Find R .
b)Calculate the voltage drop across the 2Ω Resistor using mesh/loop current method for the circuit given below

(CO1) [Application]

