

ID NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40% Max Marks: 40 Max Time: 2 hrs. 09 May 2018, Wednesday

ENDTERM FINAL EXAMINATION MAY 2018

Even Semester 2017-18 Course: **PET 213 Petroleum Production** VI Sem **Engineering**

VI Sem. Petroleum

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

.....

Part A

(3 Q x 4 M = 12 Marks)

- 1. For the following situation suggest the best artificial lift technology that can be used.
 - a. An onshore well is having a lot liquid loading due to water produced along with crude. The crude is having 40^oAPI gravity and 400 GLR.
 - b. An onshore well which is almost vertical is producing at a depth of 5,000 ft. Expected Production rate is 1000 BPD.
 - c. An offshore rig has 2 to 3 producing wells (single reservoir). Little amount of gas and sand is expected. Production rate expected to be around 10,000 BPD.
 - d. An offshore well where production rate is expected at 30,000 BPD. The crude has a 30^oAPI and gravel packing completion has been done.
- 2. What are the different components of progressive cavity pumps?
- 3. In a Well, The following data is provided:

Pump Depth: 8,000 ft

Tubing Pressure: 160 psig

Pump Intake Pressure (PIP): 280 psig

Production Rate: 3400 bpd Mixture Gradient: 0.45 psi/ft Tubing OD: 2 7/8 in. (New).

Calculate the Total Dynamic Head (TDH).

Part B

(2 Q x 5 M = 10 Marks)

- 4. Explain in detail on what factors we decide to use continuous or intermittent gas lift?
- 5. List and draw the different types of completion in hydraulic lift system.

Part C

(2 Q x 9 M = 18 Marks)

- 6. What are the design guidelines for electrical submersible pump?
- 7. Draw a neat diagram of Plunger lift system and label all its parts.

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20%

Max Marks: 20

Max Time: 1 hr.

27 March Tuesday 2018

TEST - 2

SET A

Even Semester 2017-18

Course: PET 213 Petroleum Production IV Sem. Petroleum

Engineering

Instruction:

(i) Read the question properly and answer accordingly.

- (ii) Question paper consists of 2 parts.
- (iii) Scientific and Non-programmable calculators are permitted.

Part A

(1 Q x 5 M = 05 Marks)

1. What is production forecast? How can a complete production forecast be carried out?

Part B

(1 Q x 8 M = 08 Marks)

2. For the data given in the following table, Do the Tubing string performance analysis by plotting pressure traverse in the tubing string:

Table 1

Reservoir pressure	3,000 psia
Tubing ID	1.75 in.
Wellhead pressure	550 psia
Productivity index above bubble point	1.2 stb/d-psi
Producing gas-liquid ratio (GLR)	1,200 scf/stb
Water cut (WC)	22 %
Oil gravity	35 °API
Water-specific gravity	1.05, 1 for fresh-water
Gas-specific gravity	0.75, 1 for air
Formation volume factor of oil	1.2 rb/stb
Wellhead temperature	100 °F
Tubing shoe depth	4,500 ft
Bottom-hole temperature	150 °F

Take density of water = 62.4 lb/ft^3 , density of air = 0.07647 lb/ft^3 .

3. For the data given in table 1, predict the operating point by plotting the graph.

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 20 % Max Marks: 20 Max Time: 1 hr. 22 Feb Thursday 2018

TEST - 1

Even Semester 2017-18 Course: **PET 213 Petroleum Production** VI

Engineering

VI Sem. Petroleum

Instruction:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted

Part A

(1 Q x 8 M = 08 Marks)

1. In the below figure No.1 write what are the names of 1 to 9. What does well head include? What is the use of Christmas tree? Write one advantage of bottom-hole choke, upstream burner and downstream burner?

Fig No.1

$$(1 Q x 6 M = 06 Marks)$$

2. The solution GOR of a crude oil is 800 scf/stb at 5000 psia and 175 °F. Given the following PVT data given in table No.1, estimate density and viscosity of the crude oil at the pressure and temperature:

Table No. 1

1 45.5 1161 1		
Bubble point pressure:	2500 psia	
Oil Gravity:	40 °API	
Gas- Specific Gravity:	0.81, for air=1	

The following equations can be used.

$$\rho_o = \frac{62.4 \, \gamma_0 + 0.0136 \, R_s \gamma_g}{0.972 + 0.000147 \left[R_s \sqrt{\frac{\gamma_g}{\gamma_0}} + 1.25T \right]^{1.175}}$$

$$a = R_s \left[2.2 * 10^{-7} R_s - 7.4 * 10^{-4} \right]$$

$$c = 8.62 * 10^{-5} R_s$$

$$d = 1.1 * 10^{-3} R_s$$

$$e = 3.74 * 10^{-3} R_s$$

$$b = \frac{0.68}{10^c} + \frac{0.25}{10^d} + \frac{0.062}{10^e}$$

Part C

(1 Q x 6 M = 06 Marks)

3. Construct IPR of two wells in an under saturated oil reservoir using the generalized Vogel equation. The following data are given in the Table No 2:

Table No.2

	Reservoir Pressure:	$\bar{P}=4,500$ psia
	Bubble Point Pressure	P _b = 2750 psia
Well A	Tested flowing bottom hole pressure	P _{wf1} = 3,250 psia
	Tested production rate	q ₁ = 528 stb/day
Well B	Tested flowing bottom hole pressure	P _{wf2} = 2,000 psia
	Tested production rate	q ₂ = 1500 stb/day