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Abstract: Most of the researchers use the 

transformation (x - ut) in order to evaluate the 

advection-dispersion equation of a fluid in the porous 

media. We have used boundary conditions C = 0 at 

x =  and C = C0 at x = – for t > 0 which gives 

the solution in a symmetrical concentration 

distribution. The objective of the problem is to find 

the analytical solution of differential equation in 

longitudinal direction that avoids the transformation 

which gives the solution to an asymmetrical 

concentration distribution. It will be shown that the 

solution approaches by symmetrical boundary 

conditions, provided that D dispersion coefficient is 

very small and the region nearer to the source will 

not be consider. The solution has been obtained for 

the dispersion model of longitudinal, mixing with the 

variable coefficient in finite length solute free 

domain initially. In the beginning, homogeneous 

domain is studied for dependent advection-

dispersion equation along with the uniform flow. The 

solution is obtained for the uniform velocity by 

considering the spatially dependent variable due to 

heterogeneity of domain and dispersion, proportional 

to square of the velocity. The velocity is linearly 

interpolated along finite domain with small 

increment. The input condition has been considered 

for continuous of uniform flow and of increasing 

nature. The solutions are obtained for both the 

domains by using integral solution technique and 

Duhamel’s theorem. The independent space and time 

variables processes has been considered. The effects 

of the dispersion dependency with time and the 

heterogeneity of the domain in solute transport are 

discussed with the help of graphs. 

Keywords – Dispersion Coefficient, Adsorption, 

Duhamel’s theorem, Uniform Flow, Aquifers. 

I.  INTRODUCTION  

In recent years, considerable interest and attention 

have been directed to dispersion phenomena in flow 

through porous media. Scheidegger (1954), deJong 

(1958), and Day (1956) have presented statistical 

means to establish the concentration distribution and 

the dispersion coefficient. Advection–dispersion 

equation explains the solute transport due to 

combined effect of convection and dispersion in a 



medium. Some of the one-dimensional solutions 

have been given (Tracy 1995, Sudheendra 2011) by 

transforming the non-linear advection–diffusion 

equation. A method has been given to solve the 

transport equations for a kinetically adsorbing solute 

in a porous medium with spatially varying velocity 

field and dispersion coefficients (Van Kooten 1996, 

Sudheendra 2012). An analytical approach was 

developed for non-equilibrium transport of reactive 

solutes in the unsaturated zone during an infiltration–

redistribution cycle (Severino and Indelman 2004, 

Sudheendra 2014). 

 

The solute is transported by advection and obeys 

linear kinetics. Analytical solutions were presented 

for solute transport in rivers including the effects of 

transient storage and first order decay (Smedt 2006, 

Sudheendra 2012). Pore flow velocity was assumed 

to be a non-divergence, free, unsteady and non-

stationary random function of space and time for 

ground water contaminant transport in a 

heterogeneous media (Sirin 2006). A two-

dimensional semi-analytical solution was presented 

to analyze stream–aquifer interactions in a coastal 

aquifer where groundwater level responds to tidal 

effects (Kim et al 2007). 

 

A more direct method is presented here for solving 

the differential equation governing the process of 

dispersion. It is assumed that the porous medium is 

homogeneous and isotropic and that no mass transfer 

occurs between the solid and liquid phases. It is 

assumed also that the solute transport, across any 

fixed plane, due to microscopic velocity variations in 

the flow tubes, may be quantitatively expressed as the 

product of a dispersion coefficient and the 

concentration gradient. The flow in the medium is 

assumed to be unidirectional and the average velocity 

is taken to be constant throughout the length of the 

flow field. In this paper, the solutions are obtained for 

two solute dispersion problems in a longitudinal finite 

length. In this problem, time dependent solute 

dispersion of increasing or decreasing nature along a 

uniform flow through a homogeneous domain is 

studied. In the second problem the medium is 

considered heterogeneous, hence the velocity is 

considered dependent on position variable. The 

velocity is linearly interpolated in position variable 

which represents a small increment in the velocity 

from one end to the other end of the domain. This 

expression contains a parameter to represent a change 

in heterogeneous from one medium to other medium. 

Dispersion is assumed proportional to square of 

velocity. 

II. TEMPORALLY DEPENDENT DISPSERSION ALONG 

UNIFORM FLOW 

Because mass is conserved, the governing 

differential equation is determined to be  
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where C is solute concentration at position x along 

the longitudinal direction at time t, D is dispersion 

coefficient and u is the average velocity of fluid or 

superficial velocity. To study the temporally 



dependent solute dispersion of a uniform input 

concentration of continuous nature in an initially 

solute free finite domain, we consider 
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When m is a coefficient whose dimension is inverse 

of the time variable. Thus f(mt) is an expression in 

non-dimensional variable (mt). The expression of 

f(mt) = 1 for m = 0 or t = 0. The former case 

represents the uniform solute dispersion and the 

latter case represents the initial dispersion. The 

coefficients D0 and u0 in equation (2) may be defined 

as initial dispersion coefficient and uniform flow 

velocity, respectively. Thus the partial differential 

equation (1) along with initial condition and 

boundary conditions may be written as: 
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Initially, saturated flow of fluid of concentration, C 

= 0, takes place in the medium. At t = 0, the 

concentration of the plane source is instantaneously 

changed to C = C0. Thus, the appropriate boundary 

conditions are  
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The problem then is to characterize the concentration 

as a function of x and t. where the input condition is 

assumed at the origin and a second type or flux type 

homogeneous condition is assumed. C0 is initial 

concentration. To reduce equation (3) to a more 

familiar form, we take  
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Substituting given equation into equation (3) gives 
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The initial and boundary conditions (3) transform to    

 
 

 

00),(

00)0,(

0
1

4
exp1),0(

0

2
0

0
















 
 

tt

xx

t
n

tnk

mtfD

tu
eCt dt

    

7 

It is thus required that equation (6) may be solved for 

a time dependent influx of the fluid at x = 0. The 

solution of equation C(x, t) may be obtained readily 

by use of Duhamel’s theorem [Carslaw & Jeager 

1949].  

 

If  tzyxFC ,,,  is the solution of the diffusion 

equation for semi-infinite media in which the initial 

concentration is zero and its surface is maintained at 

concentration unity, then the solution of the problem 

in which the surface is maintained at temperature 

 t is 

               dtzyxF
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This theorem is used principally for heat conduction 

problems, but the above has been specialized to fit 

this specific case of interest. Consider now the 

problem in which initial concentration is zero and 

the boundary is maintained at concentration unity. 

The boundary conditions are 
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The problem is readily solved by application of the 

Laplace transform which is defined as 
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Hence, if equation (6) is multiplied by 
pte

 and 

integrated term by term it is reduced to an ordinary 

differential equation 
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The boundary condition as x  requires that

02 C and boundary condition at 0x  requires that

p
C 1

1  thus the particular solution of the Laplace 

transformed equation is 
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The inversion of the above function is given in any 

table of Laplace transforms. The result is  
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Utilizing Duhamel’s theorem, the solution of the 

problem with initial concentration zero and the time 

dependent surface condition at x =0 is  
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Since 
2e is a continuous function, it is possible to 

differentiate under the integral, which gives 

 

   





































tmtfD

x

tmtfD

x
de

t

tmtfD

x )(4
exp

)(2

2

0

2

0

)(2

2
3

0

2

 

The solution to the problem is  
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Putting 
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particular solution of the problem may be written as 
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where, 
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III EVALUATION OF THE INTEGRAL SOLUTION 

The integration of the first term of equation (13) 

gives 
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For convenience the second integral may be 

expressed on terms of error function (Horenstein, 

1945), because this function is well tabulated. 

 



The second integral of equation (14) may be written 

as 
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Since the method of reducing integral to a tabulated 

function is the same for both integrals in the right 

side of equation (13), only the first term is 

considered. Let z  and adding and subtracting. 

The integral may be expressed as  
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Further, let, 
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Similar evaluation of the second integral of 

equation (13) gives 
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result  
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Thus, equation (13) may be expressed as 
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However, by definition, 
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Writing equation (19) in terms of error functions, 

we get 
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Thus, Substitution into equation (5) the solution is  
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Re-substituting for  and  gives 
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Re-substitute the value of the u in terms of u0, we 

get 
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where boundaries are symmetrical the solution of the 

problem is given by the first term the equation (21). 

The second term is equation (21) is thus due to the 

asymmetric boundary imposed in the more general 

problem. However, it should be noted also that if a 

point a great distance away from the source is 

considered, then it is possible to approximate the 

boundary condition by   0, CtC  , which leads to 

a symmetrical solution. 

 

IV SPATIALLY DEPENDENT DISPERSION ALONG  

NON-UNIFPORM FLOW 

 

The heterogeneity of porous domain was defined by 

scale dependent dispersion and flow through the 

medium has been considered uniform Yates (1992) 

but the flow velocity may also depend upon position 

variable in case the domain is heterogeneous. 

Zoppou and Knight (1997) have considered the 

velocity as xu  , and the solute dispersion 

proportional to square of velocity, i.e., as 2xD  ; 

in a semi-infinite domain  xx0 . But these 

expressions do not reflect real variations due to 

heterogeneity of the medium because as x , 

dispersion and velocity also become too large. In fact 

the variation in velocity due to heterogeneity should 

be small so that the velocity at each position satisfies 

the Darcy’s law in case the medium is porous or 

satisfies the laminar condition of the flow in a non-

porous medium, an essential conditions for the 

velocity parameter, u in the advection-diffusion 

equation. This factor is taken care of in the present 

work and velocity is linearly interpolated in position 

variable such that it increases from a value u0 at x = 

0 to a value   01 ub at x = L, where b may be a real 

constant. Thus 

)1(),( 0 axutxu  ,                              (22) 

Where Lba  , is the parameter accounting for the 

heterogeneity of the medium. It should be small so 

that the increase in velocity is of small order. Solute 

dispersion is assumed proportional to square of the 

velocity so we consider 

2
0 )1(),( axDtxD  .                    23 

As ax is a non-dimensional term hence D0 and u0 are 

dispersion coefficient and velocity, respectively at 

the origin (x = 0) of the medium. The domain is 

assumed initially solute free. An input concentration 

is assumed at the origin and a flux type 

homogeneous condition is assume at the other end of 

the domain. Then advection-diffusion equation 

assumes the form 

   
x

C
axu

x

C
axD

t

C




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


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


11 02

2
2
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It is further reduced into a partial differential 

equation with constant coefficients by using a 

transformation. Ultimately we use the same initial 

and boundary conditions to solve the above 

dispersion problem for dependent dispersion non-

uniform. The procedure is same as solved in the 



earlier case. Then the desired solution may be 

written as  
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A plot of logarithmic probability graph of the above 

solution is given for various values of the 

dimensionless group xuD 00 . The figure shows 

that as  becomes small the concentration 

distribution becomes nearly symmetrical about the 

value  = 1 (i.e., xtu0 ). However, for large 

values of  asymmetrical concentration distributions 

become noticeable. This indicates that for large 

value of D or small values of distance x the 

contribution of the second term in equation (25) 

becomes significant as  approaches unity.  

 

V  RESULTS AND DISCUSSIONS 

 

Concentration values are evaluated from the four 

analytical solutions discussed in a finite domain at 

times t (years) = 1.0, 2.0, 3.0 and 4.0, for input values 

C0 = 1.0, u0 = 0.11 (km/year), D0 = 50 (km2/year).  

Figures 1 represents temporal dependent 

concentration dispersion pattern of uniform input 

and input of increasing nature, respectively along a 

uniform flow through a homogeneous medium, 

described by the analytical solutions, equation (21), 

respectively. In figure 1, the uniform input 

concentration value is 1.0 at all times and the 

concentration value at x = 0 increases with time. Thus 

the respective input boundary conditions are 

satisfied. In the figure the dotted curves represents 

the solutions for an expression f(mt) = exp(−mt) 

which is of decreasing nature. In the figures the solid 

curve represents the respective solutions at t = 1.0 

(year), for another expression f(mt) = exp(mt), which 

is of increasing nature. It may be observed that in 

case of uniform input the concentration value at a 

particular position is higher for the latter expression 

of f(mt) than that for the former expression of f(mt). 

The difference increases with the distance along the 

domain. But in case of an input concentration of 

increasing nature its value is less for increasing 

nature of f(mt) than that for decreasing nature of 

f(mt). This trend is of diminishing nature up to x = 

2.0, beyond which the trend reverses. For all the 

curves drawn in figure 1, a value m (year) −1 = 1.0 

is chosen. Both the analytical solutions of section 2 

may be solved using other expressions of f(mt) which 

satisfy the conditions stated at the outset of the 

section 2.  

 



Figure 1: Temporal dependent solute dispersion 

along uniform flow of uniform input described by 

solution (equation 21). 

 

 

Figure 2: Break through curve for dispersion along 

with uniform flow. 

 

 

Figure 3: Spatially dependent solute dispersion 

along non-uniform flow of uniform input described 

by solution (Eqn 25). 

 

Figure 4: Break through curve for dispersion 

along with non-uniform flow. 

 

The distribution is symmetrical for values of x 

chosen some distance from the source. An example 

of break through curves obtained for dispersion in a 

cylindrical vertical column is shown as Figure 2. The 

theoretical curve was obtained by neglecting the 

second term of equation (21).  

 

Figure 3 gives the concentration values evaluated 

from analytical solutions (equations 25) for spatially 

dependent dispersion of uniform input and input of 

increasing nature, respectively, along non-uniform 

flow, through an heterogeneous domain. The solid 

curves in figure 3 represent the solution in which a 

value a = 1.0 (km−1) is taken. Using expressions it 

may be evaluated that due to the heterogeneity of the 

medium, the velocity u varies from a value of 0.11 

(km/year) to a value of 0.22 (km/year) and dispersion 

D varies from a value of 0.21 (km/year) to a value of 

0.42 (km/year), along the domain 0 ≤ x (km) ≤ 1. This 

figure also shows the effect of heterogeneity on the 

dispersion pattern. A dotted curve is drawn for the 



value a = 0.1 (km−1). It may be observed that the 

concentration values evaluated from the solution 

(equation 25) along a medium of lesser heterogeneity 

(which introduces lesser variation in velocity and 

dispersion along the column), are slightly higher than 

those at the respective positions of a medium of 

higher heterogeneity, near the origin but decrease at 

faster rate as the other end of the medium is 

approached. This comparison is done at t = 2.0 

(year). This value is chosen to ensure that the factor 

(u0 − aD0) in condition remains positive for the 

values chosen for u0 and D0. The distribution is 

symmetrical for values of x chosen some distance 

from the source. A break through curve is obtained 

for dispersion in for different depth as shown in 

Figure 4. The theoretical curve was obtained by 

neglecting the second term of equation (25).  

 

VI CONCLUSIONS 

 

Consideration of the governing differential equation 

for dispersion in flow through porous media give rise 

to a solution that is not symmetrical about x = u0 t for 

large values of . Experimental evidence, however, 

reveals that D0 is small. This indicates that, unless 

the region close to the source is considered, the 

concentration distribution is approximately 

symmetrical. Theoretically, 
2

1
0


C
C  only as   

0; however, only errors of the order of magnitude of 

experimental errors are introduced in the ordinary 

experiments if a symmetrical solution is assumed 

instead of the actual asymmetrical one. 

 

The solution is obtained for one dimensional 

advection – diffusion equation with variable 

coefficients along with two set of boundary 

conditions in an initially solute free finite domain 

have been obtained in two cases: 

 

 temporal dependent dispersion along with 

uniform flow through homogeneous medium 

and 

 spatially dependent dispersion along non-

uniform flow through heterogeneous 

medium which solute dispersion is assumed 

proportional to the square of velocity. 

 

The application of a new transformation which 

introduces another space variable, on the advection-

diffusion equation makes it possible to use Laplace 

transformation technique in getting the solution. 

Numerical solution has been obtained using a two-

level explicit finite difference scheme. The 

respective analytical and numerical solutions have 

also been compared and very good agreement 

between the two has been found. The analytical 

solution of the second problem in case of uniform 

input has been compared with the numerical solution 

of same problem but assuming dispersion varying 

with velocity. Such analytical solutions may serve as 

tools in validating numerical solutions in more 

realistic dispersion problems facilitating to assess 

the transport of pollutants solute concentration away 



from its source along a flow through soil medium, 

through aquifers and through oil reservoirs. 
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