IDNO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Weightage: 40 %

Max Time: 2 Hrs. 11 May 2018, Friday Max Marks: 80

ENDTERM FINAL EXAMINATION MAY 2018

VI Sem CSE Even Semester 2017-18 Course: CSE 305 Parallel Computing

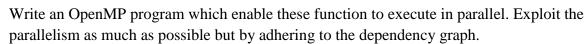
Instructions:

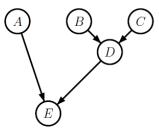
(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

Part A

(5 Q x 6 M = 30 Marks)

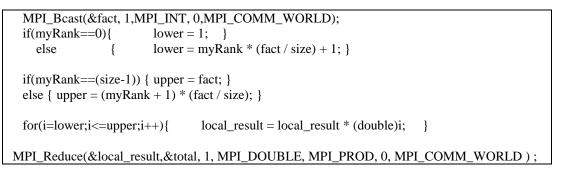

1. Consider the program given below. Convert it into hybrid program to work on four dual core processors. Show the trace for the same on quad core processor.


for(i=0;i <n;i++)< th=""><th></th></n;i++)<>	
a[i]=b[i]+c[i]	

2. Consider the program. Parallelize the program as much as possible using Openmp.

C[0] = 1;for (i=1;i<N;i++){ C[i] = C[i-1];for (j=0;j<N;j++)C[i] *= A[i,j] + B[i,j];]]

- 3. Give the merits and demerits of Shared model and Message passing model for parallelism.
- 4. Consider 5 functions A,B,C,D and E are required to execute as shown by the dependency tree given below.



5. Write a MPI program to illustrate the scenario where the processor may enter Deadlock condition.

Part B

(2 Q x 15 M = 30 Marks)

- 6. The partial MPI program given below will compute the sum of n element in an array on NP number of processes. The logic used will not work on all the test cases.
 - a. Give an example where this program will work correctly.
 - b. Give an example where this program fail to execute correctly.
 - c. Modify the program to work on all test cases.

7. Write a MPI program to read n elements of the array. If even processor, find square of the corresponding elements. If odd processor, find cube of corresponding elements.

Part C

(1 Q x 20 M = 20 Marks)

8. Consider the program and the array x given below. Give the trace of execution on a mesh topology of size 12.

	2	4	45	34	12	16	11	22	37	6	5	4	12	9	77	15	13	28	30	19
$\mathbf{x} =$																				

for (s=2; s<2*n; s*=2)	
for (i=0; i <n-s 2;="" i+="s)</td"><td></td></n-s>	
x[i] += x[i+s/2]	

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

	TEST – 2	SET A			
Even Semester 2017-18 Course: CSE 305	5 Parallel Computing	VI Sem. CSE			
Instruction: (i) Read the question properly and answer (ii) Question paper consists of 3 parts. (iii) Scientific and Non-programmable calcula					

Part A

1. What is reduction? Give an example of a realistic use of reduction in OpenMP.

2. Explain the use of nowait and barrier in OpenMP with an example.

Part B

 $(3Q \times 7 M = 21 Marks)$

 $(2Q \times 4 M = 8 Marks)$

3. Explain the working of following partial parallel program written in OpenMP.

num_threads(4); #pragma omp for collapse(2) for(i=1;i<=4;i++)for(j=1;j<=4;j++)a[i][j]=i+j;

4. Explain the process of parallelizing following C code using OpenMP.

double area, pi, x; int i, n; area = 0.0;for (i = 0; i < n; i++) { x = (i+0.5)/n;area $+= 4.0/(1.0 + x^*x);$ } pi = area / n;

Weightage: 20%

Max Marks: 40

Max Time: 1 hr.

28 March Wednesday 2018

5. Explain the process of parallelizing the following C program using OpenMP. Assume Fun1(), Fun2(), Fun3(), Fun4() and Fun5() are implemented and can be called from main program.

```
int main()
{
    int a,b,c,d,e;
    a=Fun1();
    b=Fun2();
    c=Fun3();
    d=Fun4(a,b);
    e=Fun5(c,d);
    printf(" the output of the program is %d",e);
  }
```

Part C

(1Q x 11 M = 11 Marks)

6. Explain the process of parallelizing following C code using OpenMP. There is a dependency between the iterations of the outer loop. Modify the program to avoid dependency and to accommodate parallelism. Show the trace of execution of the modified program.

```
int main()
{
    int i, j, sf, a[10][10];
    a[0][0]=3;
    a[1][0]=4;
    for(i=2;i<10;i++)
        for(j=0;j<10;j++)
        {
            sf=i*j+(10-j);
            a[i][j]=sf*a[i-2][[j];
        }
}</pre>
```

ID NO:

PRESIDENCY UNIVERSITY, BENGALURU

SCHOOL OF ENGINEERING

Weightage: 20 % Max Time: 1 hr. Max Marks: 40 20 Feb Tuesday 2018

TEST - 1

Even Semester 2017-18 Course: CSE 305 Parallel Computing VI Sem. CSE

Instruction:

- (i) Read the question properly and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and Non-programmable calculators are permitted

Part A

(4Q x 3 M= 12 Marks)

- 1. Give 3 strong reasons to justify the need parallel programming?
- 2. The Memory system not the processor Speed is bottleneck for many applications for improved performance. Explain
- 3. Give four steps in designing parallel program (Foster's design methodology).
- 4. Explain the role of compiler to support parallel programming in VLIW architecture.

Part B

(2 Q x 8 M= 16 Marks)

5. Consider the following piece of program code

- i. Why do you think the above program code can be parallelizable?
- ii. If you are given 8 processors and EREW PRAM, give the trace of parallel execution of the program on following arrays if the memory is shared.

A[i]	1	0	1	0	1	0	1	0
B[i]	2	3	4	5	6	7	8	9
C[i]	1	2	6	7	8	3	4	5

6. If 24 elements and 5 processors are given to do some computations, Explain how block data decomposition will happen if following technique is used.

i) Grouped data decomposition ii) Distributed data decomposition.

Part C

(1 Q x 12 M= 12 Marks)

7.

- i. Give the butterfly network topology with 4 i.e.(2²)processors .
- ii. Discuss the Bisection and Diameter for this topology.
- iii. Explain how processor 0 will communicate with processor 3.