

ID NO.

# PRESIDENCY UNIVERSITY, BENGALURU

### SCHOOL OF ENGINEERING

Weightage: 40%

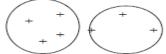
Max Marks: 80 Max Time: 2 Hrs. 11 May 2018, Friday

# END TERM FINAL EXAMINATION MAY 2018

Even Semester 2017-2018 Course: CSE 307 Data Mining and WareHouse VI Sem. CSE

#### **Instructions:**

- i. Assume missing data appropriately, if any
- ii. Answers to all questions, use proper diagrams wherever necessary.
- iii. Question paper consists of three parts. Part A, B and C are closed book type.


#### Part A

(5 Q x 4 M = 20 Marks)

- 1. Association rules with high confidence will be generally preferred in most of the applications.
  - a. Often, we will not be interested in association rules that have a confidence of 100%. Why?
  - b. Specifically explain why association rules with 99% confidence may be interesting (i.e., what might they indicate) as compared to association rules with 100% confidence?
- 2. Compare the Pros and Cons of decision tree and artificial neural network classification methods.
- 3. a. What are ensemble Classifiers? Explain with a Diagram.
  - b. State the advantage(s) of the ensemble classifier algorithm over decision-tree classifier.
- 4. a. Consider the figure given below with two clusters. Clusters are connected by a line which represents the distance used to determine inter-cluster similarity. Which inter-cluster similarity metric does this line represent?



b. Are the two clusters shown below well separated? Justify your answer.



- 5. For a two-class classification problem, with a Positive class P and a negative class N, we can describe the performance of the algorithm using the following terms: TP, FP, TN, and FN.
  - a. Place these four terms listed above into the appropriate slots in the table below.

|        |          | PREDICTED |          |
|--------|----------|-----------|----------|
|        |          | POSITIVE  | NEGATIVE |
| ACTUAL | POSITIVE |           |          |
|        | NEGATIVE |           |          |

b. Provide the formula for precision and recall using TP, TN, FP, and FN.

#### Part B

(14+12+14M = 40 Marks)

6. Consider the following dataset with five objects. Assume that you are applying k-means clustering algorithm with k=3 and Euclidean distance measure to cluster examples into three clusters. Also, assume that the initial centroids (centers of each cluster) are A1, A4 and A7.

| Attribute1 | Attribute2                          |
|------------|-------------------------------------|
| 2          | 10                                  |
| 2          | 5                                   |
| 8          | 4                                   |
| 5          | 8                                   |
| 1          | 2                                   |
|            | Attribute1<br>2<br>2<br>8<br>5<br>1 |

- a. Show the new clusters after first iteration with all the intermediate calculations.
- b. Show the centers of the new clusters after the first iteration.
- 7. Consider the following Dataset DS.

| OBJECT | Attribute1 | Attribute2 |
|--------|------------|------------|
| А      | 1          | 3          |
| В      | 2          | 6          |
| С      | 5          | 3          |
| D      | 3          | 2          |

Apply Agglomerative <u>MAX or Complete Link</u> Hierarchical Clustering algorithm on the dataset DS. Show the steps with calculations and dendrogram.

*Note:* Consider the Euclidean Distance measure as proximity metric.

8. Consider the following Dataset D.

| Screen size | Туре   | Company | <b>Purchase?</b> |
|-------------|--------|---------|------------------|
| Medium      | Laptop | DELL    | Yes              |
| Medium      | Laptop | DELL    | No               |
| Medium      | Laptop | DELL    | Yes              |
| Large       | Laptop | DELL    | No               |
| Large       | Laptop | HP      | Yes              |
| Large       | PC     | HP      | No               |
| Large       | PC     | HP      | Yes              |
| Large       | PC     | DELL    | No               |
| Medium      | PC     | HP      | No               |
| Medium      | Laptop | DELL    | No               |

Apply Naïve Bayes Classifier and classify the test record with the following values *"Medium, PC, DELL, ?"* 

Part C

(1 Q x 20 M = 20 Marks)

9. Consider the following transactional database where I1, I2, I3, I4, I5, I6, I7 are items. Assume the minimum support as 60%.

| ID | Items              |
|----|--------------------|
| T1 | I1, I2, I3, I5     |
| T2 | I1, I2, I3, I4, I5 |
| T3 | I1, I2, I3, I7     |
| T4 | I1, I3, I6         |
| T5 | I1, I2, I4, I5, I6 |

- a. Find all frequent itemsets. Indicate each candidate set  $C_k$ , k = 1, 2, ..., the candidates that are pruned by each pruning step, and the resulting frequent itemsets  $L_k$ .
- b. Generate all possible association rules based on the frequent item set and list out the same.

#### Note: No need to compute and show the confidence for the rules

Page 1 of 2

# ID NO:

# PRESIDENCY UNIVERSITY, BENGALURU

# SCHOOL OF ENGINEERING

Weightage: 20%

Max Marks: 40

Max Time: 1 hr.

28 March Wednesday 2018

TEST – 2

SET A

Even Semester 2017-18 Course: CSE 307 DATA MINING AND WAREHOUSE VI Sem. CSE

#### Instruction:

- (i) Read the guestions properly and answer accordingly.
- (ii) Question paper consists of 3 parts.

#### Part A

 $(3 Q \times 3 M = 9 Marks)$ 

- 1. a. Define Overfitting and Underfitting.
  - b. Mention the application/criteria where Overfitting is not at all a problem.
- 2. State the advantage of the RIPPER in terms of Instance Elimination approach.
- 3. Consider a tree with 15 leaf nodes and 30 errors on training (out of 1000 instances). a) Calculate the training error.
  - b) Calculate Generalization error based on Pessimistic approach.

#### Part B

 $(2 Q \times 8 M = 16 Marks)$ 

- 4. Consider a training set that contains 200 positive data instances (class = "+") and 500 negative data instances (class = "-"). Consider the following rules R1 and R2 with the following scenarios:
  - R1: (Alpha=10) $\rightarrow$  class = "+" (covers 40 positive and 12 negative data instances)
  - R2: (Beta=8)  $\rightarrow$  class = "+" (covers 35 positive and 15 negative data instances)

Calculate FOIL's information gain (as done by the RIPPER algorithm) for each rule and state which rule will be selected as a best rule by FOIL's information gain metric. Show your work.

5. Consider the following data set DS.

| S.No. | Attribute1 | Attribute2 | Attribute3 | Attribute4 | Class |
|-------|------------|------------|------------|------------|-------|
| 1     | C1         | 1          | 3          | no         | YES   |
| 2     | C1         | 2          | 2          | yes        | NO    |
| 3     | C2         | 0          | 2          | yes        | NO    |
| 4     | C1         | 0          | 2          | no         | YES   |
| 5     | C3         | 1          | 1          | no         | YES   |
| 6     | C2         | 2          | 1          | no         | NO    |
| 7     | C2         | 1          | 1          | no         | NO    |
| 8     | C1         | 0          | 3          | yes        | NO    |



Consider a decision tree construction using ID3 algorithm [Note: Use entropy calculations for feature/attribute selection].

- a. Identify the root attribute and show the calculation.
- b. Show the child nodes records as per the root attribute.

#### Part C

(1Q x 15 M = 15 Marks)

6. Consider the following general sequential covering algorithm used to construct classification rules as per the discussion in the class room and answer the following questions:

#### Sequential Covering Algorithm:

1. Let D be a dataset of training data instances with n predictive attributes A1, ...An, and a target attribute C with possible values c1, ..., ck.

- 2. Let RuleSet = {} be the initial rule list.
- 3. for each class *ci* in C do

4. while stopping criterion is not met do

5.  $R \leftarrow \text{Learn-One-Rule}(D, ci)$ 

6. D  $\leftarrow$  D – data instances covered by R (i.e., remove training data instances from D that are covered by R)

7. RuleSet ← RuleSet U R (i.e., add R at the bottom of the rule list in RuleSet)

- 8. end-while
- 9. end-for
- a. In what order does the RIPPER algorithm consider the class values *c1,...,ck* in line 3 while constructing rules? Explain.
- b. Consider the *LearnOneRule* function in line 5 of the algorithm.
- i. What rule growing approach is used in RIPPER?
- **ii.** Explain about the metric used in RIPPER to select the best candidate condition among the candidate conditions to add to the rule?
- c. What stopping criterion does RIPPER use in line 4 of the algorithm above?
- d. Briefly explain the rule set optimization process in RIPPER algorithm.





# PRESIDENCY UNIVERSITY, BENGALURU

# SCHOOL OF ENGINEERING

Weightage: 20 %

Max Marks: 40

Max Time: 1 hr.

20 Feb Tuesday 2018

### **TEST –** 1

Even Semester 2017-18 Course: CSE 307 DATA MINING AND WAREHOUSE VI Sem. CSE

#### Instruction:

- (i) Read the questions properly and answer accordingly.
- (ii) Question paper consists of 3 parts.

#### Part A

 $(3 Q \times 3 M = 9 Marks)$ 

- a) Distinguish between Classification and Regression.
  b) Distinguish between Data Mining, DBMS and OLAP.
- 2. Suppose a group of persons with the sorted medical store credit points listed as follows: 0, 400, 1200, 1600, 1600, 1800, 2400, 2600, 2800
  - a) Partition them by Equi-width binning for bin width of 1000
  - b) Partition them by Equi-frequency binning for bin density of 3
- 3. Compute the SMC similarity, the Jaccard similarity and L1 distance between the following two binary vectors x and y:

x = 0101010001

y = 0100011000

#### Part B

(2 Q x 8 M = 16 Marks)

- 4. Explain the steps of KDD process with a diagram.
- 5. a. What is feature subset selection?
  - b. Explain the different approaches for feature subset selection?

c. Illustrate a scenario where feature subset selection takes care of the Curse of Dimensionality

#### Part C

 $(1Q \times 15 M = 15 Marks)$ 

- Consider the training set shown below for a binary decision tree classification problem.
  (a) Compute the Gini index (Gini(t) = 1 -Σ<sub>I=0</sub><sup>C-1</sup>[P(i|t)]<sup>2</sup>) for the overall collection of training examples.
  - (b) Compute the Gini (split) for the Gender attribute.
  - (c) Compute the Gini (split) for the Type attribute using multi-way split.
  - (d) Compute the Gini (split) for the Size attribute using multi-way split.
  - (e) Which attribute is better: Gender, Type, or Size?
  - (f) Justify multi-way split leads to less impurity as compared to two-way/Binary split.

#### TRAINING SET:

| Record No. | GENDER | TYPE   | SIZE        | CLASS/TARGET |
|------------|--------|--------|-------------|--------------|
| 1          | М      | Family | Small       | C0           |
| 2          | М      | Sports | Medium      | C0           |
| 3          | М      | Sports | Medium      | C0           |
| 4          | М      | Sports | Large       | C0           |
| 5          | М      | Sports | Extra Large | C0           |
| 6          | М      | Sports | Extra Large | C0           |
| 7          | F      | Sports | Small       | C0           |
| 8          | F      | Sports | Small       | C0           |
| 9          | F      | Sports | Medium      | C0           |
| 10         | F      | Luxury | Large       | C0           |
| 11         | М      | Family | Large       | C1           |
| 12         | М      | Family | Extra Large | C1           |
| 13         | М      | Family | Medium      | C1           |
| 14         | М      | Luxury | Extra Large | C1           |
| 15         | F      | Luxury | Small       | C1           |
| 16         | F      | Luxury | Small       | C1           |
| 17         | F      | Luxury | Medium      | C1           |
| 18         | F      | Luxury | Medium      | C1           |
| 19         | F      | Luxury | Medium      | C1           |
| 20         | F      | Luxury | Large       | C1           |